
USER GUIDE MANLAB 2.0

Contacts:

Sami Karkar, karkar@lma.cnrs-mrs.fr

Bruno Cochelin, cochelin@lma.cnrs-mrs.fr

Christophe Vergez, vergez@lma.cnrs-mrs.fr

Olivier Thomas, olivier.thomas@cnam.fr

Arnaud Lazarus, lazarus@ladhyx.polytechnique.fr

November 8, 2010

2

Credits :

Version 2.0 editor : Sami Karkar

Version 1.0 editor : Rémy Arquier

Stability analysis : Arnaud Lazarus, Cyril Touzé

Visualisation scripts : Olivier Thomas

Examples : Bruno Cochelin, Christophe Vergez, Sami Karkar, Olivier

Thomas

Contents

0.1 WHAT’S NEW IN MANLAB 2.0? . 7

1 HOW TO USE MANLAB 9

1.1 What is Manlab . 9

1.2 PREREQUISITE . 11

1.2.1 Theoretical background . 11

1.2.2 Matlab prerequisite . 11

1.3 HOW TO GIVE THE R VECTOR IN MANLAB 12

1.4 QUICK INSTALLATION . 13

1.5 QUICK START . 14

1.5.1 How to launch examples ? . 14

1.5.2 Simple detailed example . 14

1.5.3 Construction of the PARABOLE object 15

1.5.4 Functions L0, L, et Q . 16

1.5.5 Launching script . 17

1.6 A CLOSER LOOK . 17

1.6.1 Classes and object-oriented programming within Matlab . . . 17

1.6.2 Definition of the user system (type ’LQ’) 20

3

4 CONTENTS

1.6.3 Launching . 23

1.6.4 The class SYS . 24

1.7 THE GRAPHICAL INTERFACE . 26

1.7.1 The “Man” frame . 26

1.7.2 Frame “Correction” . 27

1.7.3 Frame "Perturbation" . 27

1.7.4 Frame “Visualize” . 28

1.7.5 Frame “Export” . 28

1.7.6 Frame “Erase” . 29

1.7.7 Frame “Point” . 29

1.7.8 Frame "Diagram" . 29

1.7.9 The “Jump” button . 29

1.7.10 The “display point” check box 30

1.7.11 The “global display” check box 30

1.7.12 The “stability analysis” check box 30

1.7.13 The “Properties” menu . 31

1.8 USER-DEFINED PLOTS . 31

1.8.1 Local user-defined plot . 31

1.8.2 Global user-defined plot . 32

1.8.3 Periodic orbits plotting scripts 33

1.9 STABILITY ANALYSIS . 35

1.9.1 Equilibrium point . 36

1.9.2 Periodic orbits . 36

CONTENTS 5

1.9.3 Methods used in the stability analysis 37

1.9.4 Additional variables and parameters 39

2 EXTENDED FEATURES : FORTRAN ACCELERATION 41

2.1 INSTALLATION . 41

2.1.1 Unix/Linux . 41

2.1.2 MacOS . 42

2.1.3 Windows . 43

2.2 WRITING YOUR EQUATIONS IN FORTRAN 45

2.3 GENERAL NOTES ON THE USE OF FORTRAN WITH MANLAB . 46

2.3.1 Parameters . 46

2.3.2 Non-autonomous systems . 47

2.4 A CLOSER LOOK ON “MAKE” . 48

2.5 Debugging Fortran MEX-files . 49

3 Theoretical elements 51

3.1 CONTINUATION . 51

3.2 BRANCH SWITCHING THROUGH PERTURBATION 54

4 Simple Examples 59

4.1 THE FIRST EXAMPLE : “QUADMINI” 59

4.1.1 Problem statement . 59

4.1.2 Definition of the user problem 61

4.1.3 Launching the continuation . 62

4.2 EXAMPLE WITH BIFURCATION POINTS 62

6 CONTENTS

4.2.1 Problem statement . 62

4.2.2 Definition of the user problem 64

4.2.3 Launching the continuation . 65

4.3 A MECHANICAL EXAMPLE : BARRES 65

4.4 A CHEMICAL REACTION EXAMPLE : BRUSSELATOR 66

4.5 EXAMPLE OF AN ELECTRO-CHEMICAL REACTION 67

4.6 BUCKLING INSTABILITY . 67

5 Advanced examples I 69

5.1 VAN DER POL OSCILLATOR . 69

5.2 THE ROSSLER MODEL . 70

5.3 PHYSICAL MODEL OF A CLARINET 70

6 Advanced examples II 73

6.1 FORCED DUFFING OSCILLATOR 73

6.2 FORCED DUFFING OSCILLATOR WITH PARAMETRIC EXCITA-

TION . 74

6.3 NONLINEAR MODES OF A TWO-SPRING, ONE-MASS SYSTEM . 75

6.4 FREE DUFFING OSCILLATOR . 78

6.5 FREE DUFFING OSCILLATOR WITH ESSENTIAL N.L. 79

6.6 A 2:1 INTERNAL RESONANCE SYSTEM 79

6.7 NONLINEAR NORMAL MODES OF A 2DOF SYSTEM 81

0.1. WHAT’S NEW IN MANLAB 2.0? 7

0.1 WHAT’S NEW IN MANLAB 2.0?

Manlab 2.0 provides some improved and some new capabilities for path-following

and bifurcation analysis, with focus on fixed points and periodic orbits of dynamical

systems. New features include :

• improved graphical user interface

• improved continuation of periodic orbits through HBM using fortran acceler-

ation

• stability analysis for both fixed points and periodic orbits

• bifurcation detection for both fixed points and periodic orbits

• bifurcation analysis : classical codimension 1 bifurcations are recognized (sim-

ple bifurcation, period doubling, Neimark-Sacker –also known as secondary

Hopf)

Check out the new examples and see details of the new features in chapter 1

and 2.

8 CONTENTS

Chapter 1

HOW TO USE MANLAB

1.1 What is Manlab

In many scientific areas, one wants to solve nonlinear algebraic systems of equa-

tions of the form 1

R(U) = 0 (1.1)

where R is a vector of n equations and U a vector of n + 1 unknowns. When R

is smooth, the solutions of (1.1) is made of one or several continuous branches.

The drawing of these branches in a (Ui, Uj) plane is called a bifurcation diagram.

Here, Ui and Uj designate two components of the vector U (see figure 1.1 for an

illustration).

A classical strategy for solving (1.1) is to continue the branches of solutions from

given solution points. This means to travel on a branch of solutions, to detect when

another branch crosses (bifurcation) and, if desired, to switch to the new branch.

This continuation process is also refered to as path following technique [1, 2] .

Manlab is a graphical interactive software for the continuation of branches of

1In scientific literature related to continuation, the system (1.1) is often written R(U, λ) = 0

where R is a system of n equations, U ∈ Rn a vector of unknowns and λ ∈ R a parameter

9

10 CHAPTER 1. HOW TO USE MANLAB

Ui

Uj

Figure 1.1: Illustration of a bifurcation diagram showing various branches of solu-

tions.

solutions of system (1.1). Its solver is based on the Asymptotic Numerical Method

(ANM in english, MAN in french). At each step of continuation, the branch of so-

lutions is given by a power series expansion with respect to the pseudo-arc length

parameter. By using a high order of truncature, a continuous acurate description

of the solution branches is obtained. Because the series contain many usefull in-

formation, the continuation and the detection of bifurcation is very robust [3, 4].

In the context of non-linear dynamical systems analysis, Manlab can provide

(since version 2.0) linear stability analysis of equilibrium points and periodic or-

bits (using the Harmonic Balance Method), together with automatic bifurcation

detection and bifurcation type recognition. Thus, the user is now able to get com-

prehensive information about the physics of the system under study.

Manlab is an object-oriented Matlab program. Its graphical interface allows

the interactive control of the continuation process: computation of a portion of a

branch, choice of a new branch at a bifurcation point, reverse direction of con-

tinuation on the same branch, jump, visualization of user-defined quantities at a

1.2. PREREQUISITE 11

particular solution point, selection and deletion of a branch, or of one of its por-

tion. This set of functions proved to provide flexibility and efficiency during the

continuation process.

From a practical point of view, the user has to define the problem to solve as a

Matlab object, which contain the functions2 allowing the calculation of the vector

R of the system of equations. Thanks to the flexibility offered by the Matlab en-

vironment, users become rapidly familiar with Manlab. Calls to external routines

(e.g. finite elements code) are possible.

1.2 PREREQUISITE

1.2.1 Theoretical background

Manlab can be used as a black box and requires no particular theoretical back-

ground. However, it may be helpfull to known the principle of continuation based

on predictor-corrector technique. They are well decribed in classical textbooks

[2],[5],[6].

1.2.2 Matlab prerequisite

Manlab is intended for version number ofMatlab larger than (or equal to) R2007b

for Linux and MacOS systems, R2009b for MS Windows systems. The user is sup-

posed to be familiar with basic operations on vectors and structures in Matlab.

Experience in object-oriented programming is not required.

To use the Fortran acceleration capability, a valid fortran compiler is needed,

as well as the mex utility of Matlab (available to most distribution, but optional).

2so-called "methods" in object-oriented programming.

12 CHAPTER 1. HOW TO USE MANLAB

It must be compatible with the version of mex you are using : Windows users shall

use g95, MacOS and Linux users should use gfortran.

1.3 HOW TO GIVE THE R VECTOR IN MANLAB

In Manlab, the branches of solutions are sought as power series expansion of a

path parameter a :

U(a) =

Norder∑

i=0

aiU i (1.2)

and the order of truncature Norder is generally high, between 15 and 30. For an

easy and efficent computation of the power series, the vector of equation R has to

be polynomial and quadratic. More precisely, Manlab deals with systems of the

form :

R(U) = L0 + L(U) + Q(U, U) = 0 (1.3)

where L0 is a constant vector, L a linear operator with respect to U , and Q a bi-

linear operator with respect to U . This quadratic framework could appear as very

restrictive at first. However, as we shall see along this manual, a very large class

of algebraic systems can be put under that framwork provide that some transfor-

mations are performed and additional variables are added.

Let’s take an example. We want to solve the following system

r1(u1, u2, λ) = 2u1 − u2 + 100 u1

1+u1+u2

1

− λ = 0

r2(u1, u2, λ) = 2u2 − u1 + 100 u2

1+u2+u2

2

− (λ + µ) = 0.
(1.4)

Introducing the following additional variables v1 = u1 + u2
1, v2 = u2 + u2

2, v3 = 1
1+v1

1.4. QUICK INSTALLATION 13

and v4 = 1
1+v2

, the system is now equivalentely rewritten as,

0 +2u1 − u2 − λ +100u1v3 = 0

−µ +2u2 − u1 − λ +100u2v4 = 0

0 +v1 − u1 −u2
1 = 0

0 +v2 − u2 −u2
2 = 0

−1 +v3 +v1v3 = 0

−1
︸︷︷︸

L0

+v4
︸ ︷︷ ︸

L(U)

+ v2v4
︸ ︷︷ ︸

Q(U,U)

= 0

(1.5)

with U = [u1, u2, v1, v2, v3, v4, λ].

To put a given system under the required formalism 1.3 is generally the most

difficult and unusual task for the beginner with Manlab.

1.4 QUICK INSTALLATION

• Uncompress the archive manlab_(version).tar.gz in a directory. In the

archive are gathered Matlab files required by Manlab together with various

examples detailed hereafter. The tree structure of manlab_(version).tar.gz

is detailed below:

MANLAB/SRC/← source files mandatory for the functionning of Manlab

MANLAB/DOC/← documentation

MANLAB/BASIC-EXAMPLES/← various examples ready to work with

• Add the path of directories MANLAB/SRC/ to the path variable of Matlab.

Example : if the archive has been unpacked in the directory

/home/myself/applications/, you only have to type in the Matlab con-

sole the following commands:

> addpath(’/home/myself/applications/MANLAB/SRC’);

14 CHAPTER 1. HOW TO USE MANLAB

Manlab is now installed on your computer.

Note : If you want to use fortran acceleration, you will need extended installation

as described in chapter 2.

1.5 QUICK START

1.5.1 How to launch examples ?

Matlab scripts allowing to run the examples can be found in the directory

BASIC-EXAMPLES of the archive. Make this directory your working directory in

Matlab, and type in parabole in the command line to launch the parabole exam-

ple. The graphical interface of Manlab is made visible and the continuation can

be started using the button “+>”.

1.5.2 Simple detailed example

To have a quick, but yet deep understanding of Manlab, the user is invited to

read and execute the source codes of the example below. They demonstrate the

continuation of a parabola. The unknow vector is U = [x, y]t and the vector of

equation

R(U) = y − (x− a)2 = 0 (1.6)

R(U) has to be rewritten as a ’LQ’ problem:

R(U) = L0 + L(U) + Q(U, U) = 0 (1.7)

L0, L, Q contain the constant, linear and quadratic terms respectively:

L0 = −a2, L(U) = y + 2ax, Q(U1, U2) = −x1x2 (1.8)

1.5. QUICK START 15

with U1 = [x1, y1]
t and U2 = [x2, y2]

t.

The files needed to run this example (L0.m, L.m, Q.m and PARABOLE.m) can be

found in the directory BASIC-EXAMPLES/@PARABOLE. The first three files contain

the definition of the functions L0, L et Q used to calculate the vector of equations

R, and the file PARABOLE.m is the constructor (in the sense of object-oriented pro-

graming). Finally the instructions which allow to launch the graphical interface

with the user defined parameters are written in the script file parabole.m located

in the BASIC-EXAMPLES directory (same level as @PARABOLE).

1.5.3 Construction of the PARABOLE object

The file below allows to create an object containing data linked to the problem. In

the present case of a parabola defined in Eq. 1.6, the unique data is the constant

parameter a.

File : PARABOLE.m

function objparabole = PARABOLE(a)

% creat ion of a structure containing the constant a

structparabole . a = a ;

% creat ion of a manlab ob j e t which def ines a system

% with two unknowns and one equation (the number o f

% unknowns should be passed as an argument)

objsys = SYS(2) ;

% creat ion of the PARABOLE o j e c t containing the data

% of the structure structparabole and her it ing from

% the the ob j e c t objsys

objparabole = c lass (structparabole , ’PARABOLE’ , objsys) ;

end

The command objsys = SYS(2); creates an object which is a nonlinear sys-

16 CHAPTER 1. HOW TO USE MANLAB

tem for Manlab. The command

objparabole = class(structparabole,’PARABOLE’,objsys); allows to link

the object objsys with the structure structparabole and returns the resulting

object objparabole whose type is PARABOLE.

While these command lines may appear unclear to the reader unfamiliar with

object-oriented programming, it should be noticed that these few lines allowing the

object creation are almost always the same ! Only the name of the object (here

PARABOLE) and the number of unknowns should be changed. This can be checked

in the examples presented at the end of this userguide. Therefore, no need to un-

derstand subtleties of the object-oriented programming, working by analogy should

work.

1.5.4 Functions L0, L, et Q

File : L0.m

function L0 = L0(objparabole)

% L0 = −a^2

L0 = −objparabole . a ∗ objparabole . a ;

end

File : L.m

function L = L(objparabole ,U)

% L = y + 2 a x

L = U(2) + 2 ∗ objparabole . a ∗ U(1) ;

end

File : Q.m

function Q = Q(objparabole ,U1,U2)

% Q = − x1 ∗ x2

Q = − U1(1) ∗ U2(1) ;

end

1.6. A CLOSER LOOK 17

1.5.5 Launching script

The following script, located in the BASIC-EXAMPLE directory, allows to launch the

continuation of a branch of parabola:

> manlabinit ; % in i t i a l i s a t i o n of Manlab

> a = 1; % de f in i t i on of the constant a

> ML_problem = PARABOLE(a) ; % creat ion of a PARABOLE obje c t

> ML_Ustart = [a ; 0 ;] ; % de f in i t i on of a vector containing

% an approximate so lut ion

> ML_dispvars = [1 , 2] ; % de f in i t i on of a vector containing

% the index of the var iables to plot (x , y)

> manlabstart ; % launching of manlab

Once this script has been launched, the graphical interface of Manlab is made

visible and the continuation can be started using the button “+>”.

1.6 A CLOSER LOOK

A more detailed and precise description of what has been presented above is given

hereafter.

1.6.1 Classes and object-oriented programming within Mat-

lab

In the following, some concepts allowing the writting of Matlab classes are re-

viewed. For more details, the reader should refer to the Matlab documentation.

From a pragmatical point of view, a Matlab class is defined by a set of source

files in the same directory. The name of that directory must begin with the charac-

ter @, while the rest of the name is considered to be the name of the class.

18 CHAPTER 1. HOW TO USE MANLAB

Example : If you want to create a class named CIRCLE, a directory @CIRCLE

should first be created and the files defining the class stored inside this directory.

In each of these files is written a function which manipulates the data embedded

into the class. Among the files, one should be the constructor of the object. The

constructor must have the same name as the class, for example : CIRCLE.

A call to the constructor function usually returns an object of the corresponding

class type. The remaining functions in the directory are used to manipulate this

object by manipulating the structure of data embedded in the object.

Here is an example of a Matlab class which defines the concept of a circle :

File : CIRCLE.m (constructor)

function o b j c i r c l e = CIRCLE(centrex , centrey , radius)

% de f in i t i on of the structure o f data o f a c i r c l e

s t r u c t c i r c l e . cx = centrex ;

s t r u c t c i r c l e . cy = centrey ;

s t r u c t c i r c l e . r = radius ;

% dec larat ion of the c lass CIRCLE embedding as a member

% the structure s t r u c t c i r c l e

o b j c i r c l e = c lass (s t ru c t c i r c l e , ’CIRCLE ’) ;

end

Once the file has been placed into the directory @CIRCLE, the command

> mycircle = CIRCLE(-1, 3, 6);

allows to create a circle object the centre of which is the point (−1, 3) and the radius

is 6. Both information are stored in the variable mycircle. Of course, without any

additional function, this object is useless. Here is a function to plot the circle in a

Matlab figure :

File : Draw.m (method)

1.6. A CLOSER LOOK 19

function [] = Draw(ob j c i r c l e , npoints)

cx = o b j c i r c l e . cx ;

cy = o b j c i r c l e . cy ;

r = o b j c i r c l e . r ;

xs = cx + r ∗ cos ((0 : npoints −1)/ nbpoints ∗ 2 ∗ pi) ;

ys = cy + r ∗ sin ((0 : npoints −1)/ nbpoints ∗ 2 ∗ pi) ;

p lo t (xs , ys) ;

end

Once this function has been placed inside the directory @CIRCLE, the following

commands

> mycercle = CIRCLE(-1, 3, 6);

> Draw(mycircle, 20);

plot the circle in a figure using 20 points for the drawing. It is worth noting that

the first argument of the functions applying to the class (so-called methods) should

be an object which type is CIRCLE. If it is not the case, the function cannot work

within Matlab as a method, and an error will occur.

It is possible to write as many methods as needed to work on data embedded

within the class. Here is another illustration of a method which allows to translate

the circle:

File : Translate.m (method)

function objcircle = Translate(objcircle, tx, ty)

objcircle.cx = objcircle.cx + tx;

objcircle.cy = objcircle.cy + ty;

end

Once this file has been placed in the directory @CIRCLE, the following com-

mands allow to plot the original and the translated circles on the same figure:

20 CHAPTER 1. HOW TO USE MANLAB

% construction of the circle

> mycircle = CIRCLE(-1, 3, 6);

% Translation of the circle and copy in variable mycircletranslated

> mycircletranslated = Translate(mycircle, 2, 2);

% Plot the original circle in a figure

> Draw(mycircle, 20);

% Do not erase the plot before next plot

> hold on;

% Plot the translated circle

> Draw(mycircletranslated, 20);

1.6.2 Definition of the user system (type ’LQ’)

To work with Manlab, the system of equations to solve has to be implemented has

a Matlab class. This class will obviously contain its constructor (the method used

to create the class) as well as the methods allowing the calculation of the residue

of the system of equations (L0, L and Q).

Moreover, in order to "link" your particular class to the Manlab solver, your

class should derive (only one command line) from an existing class of type "Manlab

system". See figure (1.2) for an illustration.

Your class should contain at least four functions :

• the first one allows the creation of the object. A structure of data related to

the problem will possibly be defined (constant values, vectors, matrix, ...):

function obj = YOURSYS(yourparameters)

• the three remaining functions L0, L, et Q should respect the following rules

concerning the syntax and type of arguments:

function [L0] = L0(instance_yourobj)

function [L] = L(instance_yourobj, U)

function [Q] = Q(instance_yourobj, U1, U2)

1.6. A CLOSER LOOK 21

Q = Q(yourobject,U1,U2)

@SYS : MANLAB class for nonlinear systems

is derivated from

@YOURSYS : Class defining your system

Must contain the following methods:

yourobject = YOURSYS(yourparameter)

L0 = L0(yourobject)

L = L(yourobject,U)

Figure 1.2: Your class must contain the method required for its creation (the con-

structor) as well as the methods involved in the calculation of the residue. Moreover,

your class should be derived from a more general class (type @SYS) given by Man-

lab

Each of these functions should be written in a separate file 3. This is exemplified

in figure (1.3).

Since release R2006a, the structure of class definition have changed, and meth-

ods may be declared in a unique file. However, the main structure of Manlab 2.0

still uses the old style for class definition. It might change in a future release.

Note that projects using HBM with fortran acceleration use a different parent

class called SYSHB. The SYSHB class itself is derived from the SYS class. However,

a few methods differs. Your object class should therefore comply with that specific

class. Especially, the operators L0, L and Q methods have a different syntax, re-

quiring additional arguments : function [L0] = L0(instance_yourobj, H, Neq)

3It is not possible to define more than one function in the same file, excepted for locally called

functions (see Matlab documention)

22 CHAPTER 1. HOW TO USE MANLAB

Files in directory @YOURSYS :

YOURSYS.m

L.m

Q.m

L0.m
function [votreobj]=YOURSYS(parameters)

L.m

function [L] = L(yourobj, U)

L0.m

function [L0] = L0(yourobj)

Q.m

%definition of the structure of data

function [Q] = Q(yourobj, U1, U2)

%Allocation and calculation of L0

[...]

[...]

%creation of your object (derivation)
yourobj =class(yourobj,’YOURSYS’,sys);

%Allocation and calculation of L

%Allocation and calculation of Q

%Fields of yourobj are available

yourobj.yourmatrix = [2,3;1,6];
[etc...]

yourobj.yourparameter = 2.2326;

%(yourparameter and yourmatrix)
[...]

sys = SYS(11); % (example)

%definition of problem SYS (11 unknowns)

YOURSYS.m

Figure 1.3: Minimal example of the files organization defining a class named

YOURSYS. There are four required functions which allow to define a ’LQ’-type

quadratic problem. In the creator function YOURSYS, an object @SYS is created, as

well as an object @YOURSYS, deriving from the class @SYS. Note that data embed-

ded in your class (here yourmatrix and yourparameter) are available in all the

functions located in directory @YOURSYS through the variable named yourobj.

1.6. A CLOSER LOOK 23

function [L] = L(instance_yourobj, U, H, Neq)

function [Q] = Q(instance_yourobj, U1, U2, H, Neq)

The inheritance command (last commands in the constructor) should then look

like :

objsyshb = SYSHB(H,Neq,’forced’);

% or ’free’

instance_yourobj = class(instance_yourobj,’YOURSYS’,objsyshb);

1.6.3 Launching

Launching Manlab is made through a script named manlabstart in the Matlab

shell.

Variables ML_objsys, ML_Ustart and ML_dispvars must be predefined before

the script is launched.

• Variable ML_problem must be be an object deriving from the class SYS (or

SYSHB for fortran acceleration) and must embed functions L0, L, Q and a

creator function (e.g. YOURSYS).

• Variable ML_Ustart is an approximate solution vector. Note that ML_Ustart

must be a column vector (length ninc).

• Variable ML_dispvars is a matrix whose two columns are the index of the

variables to plot in the bifurcation diagram. As an illustration:














x1, y1

x2, y2

x3, y3

...

xn, yn














(1.9)

24 CHAPTER 1. HOW TO USE MANLAB

Please, note that the maximum number of simultaneous plots n is equal to 8.

Example : If dispvars=[1,2;1,4] then two curves will be simultaneously plot-

ted on the same diagram: U(2) as a function of U(1), and U(4) as a function of

U(1). The number of curves to plot is determined automatically as being the

number of lines in dispvars.

Example : Launching Manlab with an object whose type is YOURSYS, an

approximate vector and a vector to precise which variables to plot.

File : lance.m

manlabinit ; % In i t i a l i s a t i o n of Manlab

% creat ion of an ob je c t whose type i s YOURSYS

ML_problem = YOURSYS(yourparameters) ;

% de f in i t i on of an approximate so lut ion vector

ML_Ustart = [0 ; 2 ; 0 . 3 ; −2] ;

% de f in i t i on of a vector containing the index of the var iables to plot

ML_dispvars = [1 , 2] ;

% ca l l to the manlabstart s c r ip t

manlabstart ;

When the manlabstart is launched, Manlab tries to make a correction from

the approximate solution ML_Ustart to come back right onto the solution. Once

the correction step is over, the Manlab interface appears and you can start the

continuation of solution branches of your problem. The starting point is indicated

by a square box on the bifurcation diagram. A tangent vector at the starting point

is also made visible on the diagram. Clicking the “+>” button make the continua-

tion toward the direction indicate by the tangent vector. Clicking the “<-” button

make the continuation in the reverse direction.

1.6.4 The class SYS

The class defined by the user must derive from the class SYS. Therefore, it can be

seen as an interface between the user class and the rest of Manlab implementa-

1.6. A CLOSER LOOK 25

tion.

In particular, the method for the creation of a SYS object is:

> objsys = SYS(ninc);

where ninc is the number of unknowns of the user problem. The number of equa-

tions is automatically set to ninc-1.

The class SYS returns an instance of an object (objsys) which allows to alter

some Manlab parameters. These parameters can be modified through the follow-

ing functions:

• objsys = set_ordre(objsys, order). Allows to modify the order of the

series expansion in the ANM process. The default value is 20.

• objsys = set_itemax(objsys, itemax). Allows to modify the number

of maximum iterations in Newton-Raphson correction. The default value is

15.

• objsys = set_chemin(objsys, A). Allows to modify the path vector for

the ANM. A should be a column vector with length ninc. By default, each

component of A is set to 1.

• objsys = set_nbptstroncon(objsys, order). Allows to modify the num-

ber of points in a section of a branch (used for the plot and the export of the

section). The default value is 8.

• objsys = set_nech(objsys,nech). Allows to modify the number of time

samples used in the time-domain algorithm for stability analysis. Default

value is 100.

An example of how to use these functions is given in section 4.2.3 page 65.

For details about the SYSHB class, please refer to chapter 2.

26 CHAPTER 1. HOW TO USE MANLAB

1.7 THE GRAPHICAL INTERFACE

Figure 1.4: Graphical interface of Manlab

1.7.1 The “Man” frame

+> (branch .) : Pressing this button launches the calculation of Nb tron sections

from the current point. The direction of continuation is given by the tangent vector

indicated on the bifurcation diagram.

<- (branch .) : Pressing this button launches the calculation of Nb tron sections

from the current point. The direction of continuation is opposite to the tangent

vector indicated on the bifurcation diagram.

1.7. THE GRAPHICAL INTERFACE 27

Number ’5’ : Number of portions per branch. ’5’ is the default value

Threshold : Threshold relative to the residue in the ANM calculation

Cancel branch : Erase the latest branch calculated

1.7.2 Frame “Correction”

Threshold : Threshold relative to the correction.

Enable correction : If this box is checked, and if the starting point does not sat-

isfy the tolerance criterion, a correction is applied until the norm of the residual

vector become smaller than the threshold before starting the ANM calculation of

the next portion

1.7.3 Frame "Perturbation"

P=+c : Add a “positive” perturbation to the original equations. The "intensity" of

the perturbation can be controlled through its norm c. Note that a correction step

is automatically launched when this button is pressed.

P=0 : No perturbation. However, a correction step is automatically launched when

this button is pressed.

P=-c : Add a “negative” perturbation to the original equations. The "intensity" of

the perturbation can be controlled through its norm c. Note that a correction step

is automatically launched when this button is pressed.

c : Norm of the perturbation. Note that a correction step is automatically launched

when the value of c is changed.

28 CHAPTER 1. HOW TO USE MANLAB

1.7.4 Frame “Visualize”

point : Launches the visualisation procedure disp.m (local plot) relative to a point

in the diagram that you have to select with the mouse. The selected point is then

displayed and become the current active point.

portion : Launches the visualisation procedure disp_global.m (global plot) rel-

ative to a section in the diagram that you have to select with the mouse.

branch : Launches the visualisation procedure disp_global.m (global plot) rel-

ative to a branch in the diagram that you have to select with the mouse.

diag. : Launches the visualisation procedure disp_global.m (global plot) for the

complete diagram.

1.7.5 Frame “Export”

point : Export into the Matlab variable ML_Uj all the components of the vector

U corresponding to the current active point. Additional information is returned if

stability analysis is enabled.

portion : Export into theMatlab variable ML_Up all the components of the vector

U for all points of a section, which should be selected with the mouse. The terms of

the serie expansion of the selected branch are also exported in theMatlab variable

ML_Ups. Additional information is returned if stability analysis is enabled.

branch : Export into the Matlab variable ML_Ub all the components of the vector

U for all the points of a branch, which should be selected with the mouse. Addi-

tional information is returned if stability analysis is enabled.

diag. : Export all the components of vector U into the Matlab variable ML_Ud for

all points of the diagram. Additional information is returned if stability analysis is

enabled.

1.7. THE GRAPHICAL INTERFACE 29

1.7.6 Frame “Erase”

portion, branch, diag. : Erase the element which will then be selected with the

mouse in the main diagram window (or the whole diagram, in the last case).

1.7.7 Frame “Point”

Place Uj : Allows to select as a current active point, a point among branches al-

ready calculated. In practice, simply click with the mouse wherever wished on the

diagram.

Import ML_Uj : The point specified in the global variable ML_Uj is chosen as

the new current active point, and a correction is applied. This allows to place the

current active point of Manlab through the Matlab shell. This function may be

used if many approximate solutions are known, but are not connected by branches.

1.7.8 Frame "Diagram"

Lock zoom : Freeze/unfreeze the zoom scale of the main diagram plot (window :

figure 2).

Load/Save : Allows to load a diagram previously saved. Note that a modification

of the number of unknowns of a problem might cause an incompatibility with old

diagrams.

1.7.9 The “Jump” button

This button allows to change the current active point through a jump procedure.

This procedure can be seen as a first order predictor.

30 CHAPTER 1. HOW TO USE MANLAB

After clicking this button, click on the desired arrival area in the main diagram

(windows : figure 2). The jump direction is given by the tangent to the branch at

the current active point. The length of the jump is given by the distance from the

current active point on the first curve (usually blue) to the selected arrival point.

Once the jump has been made, a correction step is automatically launched. If

this correction step fails, the jump procedure is cancelled.

1.7.10 The “display point” check box

This check box allows to control the behaviour of Manlab concerning the local

plots (see hereafter : USER-DEFINED PLOTS) without the command line. Its

default value is related to the boolean-valued, global variable ML_pointdisplay

that must be set before launching Manlab (1 : enabled, 0 : disabled).

1.7.11 The “global display” check box

This check box allows to control the behaviour of Manlab concerning the global

plots (see hereafter : USER-DEFINED PLOTS) without the command line. Its

default value is related to the boolean-valued, global variable ML_globaldisplay

that must be set before launching Manlab (1 : enabled, 0 : disabled).

1.7.12 The “stability analysis” check box

This check box allows to enable or disable manually the linear stability analysis

(see hereafter : STABILITY ANALYSIS) without the command line. Its default

value is related to the boolean-valued, global variable ML_stability that must

be set before launching Manlab (1 : enabled, 0 : disabled).

Note that you can disable/re-enable this functionality, only if it was enabled in

the first place (at launch time). In that case, make sure you have defined proper

1.8. USER-DEFINED PLOTS 31

values for the global variable ML_varstab and that the functions needed for com-

puting the jacobian matrix are available in your object class directory.

1.7.13 The “Properties” menu

In this menu, you can switch between the two algorithms of stability analysis,

provided stability analysis has been enabled.

1.8 USER-DEFINED PLOTS

The continuation graph in Manlab only displays the plots of variables whose in-

dexes are specified in variable ML_dispvars. To extend the plotting possibilities,

two methods are available in Manlab:

1.8.1 Local user-defined plot

The local user-defined plot allows to plot whatever variable, or function of vari-

ables, at a given point of the continuation graph. To achieve this, a function disp.m

should be created and placed in the directory of the class corresponding to the prob-

lem studied:

function [] = disp(instance_yourobj, Uj, Ujstab);

instance_yourobj is an instance of your object, Uj is a column vector con-

taining all the variables of the problem, and Ujstab is an optional vector used for

stability analysis (it must appear in the calling arguments sequence, whether or

not it is used in the script). This function is called each time a continuation point

is calculated and each time the button "plot point" is pressed.

Example : A very simple plot function

File : disp.m

32 CHAPTER 1. HOW TO USE MANLAB

function [] = disp (obj , Uj , Ujstab)

f igure (3) ;

bar (Uj) ; % bar plot o f the values o f a l l components o f vector U

end

In the body of function disp, whateverMatlab command can be used (including

various kinds of plots).

The default behaviour can be set in your launching script lance.m with the

following command :

> ML_pointdisplay = 1 % local user-defined plots : 1=enable, 0=disable

When the checkbox display point is enabled, the disp function is called

after each newly computed portion, as well as after a change of current active point

using the “Place Uj” button.

The user can change the default behaviour at any time (except during a compu-

tation) by checking this box.

1.8.2 Global user-defined plot

The global user-defined plot relies on the same principle as the local one, excepted

that it allows to reach all the points inside the portion of a branch. A function

disp_global should be created and placed in the directory of the class corre-

sponding to the problem studied:

function [] = disp_global(instance_yourobj, Us, Usstab);

instance_yourobj is an instance of your object, Us is a matrix whose column

vectors contain all the variables of the problem, and Usstab is a matrix whose col-

umn vectors contain corresponding stability information. The number of columns

depends on the number of points per portion nbptstroncon, which can be modi-

fied (see section 1.6.4).

1.8. USER-DEFINED PLOTS 33

The default behaviour can be set in your launching script lance.m with the

following command :

> ML_globaldisplay = 1 % global user-defined plots : 1=enable, 0=disable

When the checkbox global display is enabled, the disp_global function is

called after each new calculation of a portion, or when any of the buttons “Portion”,

“Branch” or “Diagram” of the “Visualize” frame is used.

The user can change the default behaviour at any time (except during a compu-

tation) by checking this box.

1.8.3 Periodic orbits plotting scripts

A set of functions and scripts for drawing plots (local and global) for HBM periodic

orbits, written by O. Thomas, are provided with Manlab. Here is a list of the

functions available to users to easily write their own global displaying scripts.

General plotting settings :

pencolorML.m

Sets up 5 colours for fancier plots. Call this script first in your user-defined plot

functions if you want to use these colours. It is already used by the other plotting

functions.

Local plots :

plotbarsincosHBM.m

Plots a bar graph of all sine and cosine components amplitudes of the selected

variables. The user must define the harmonic(s) number(s) and the variable(s)

index(es) of interest.

34 CHAPTER 1. HOW TO USE MANLAB

plotbarHBM.m

Plots a bar graph of the harmonics amplitudes of the selected variables. The user

must define the harmonic(s) number(s) and the variable(s) index(es) of interest,

instead of the sin/cos amplitudes

plotperiodHBM.m

Plots a time-domain representation of variables. The user must define the index(es)

of the variable(s) of interest.

plotNNMHBM.m

Plots a 3D surface representing the Nonlinear Normal Mode (invariant manifold)

to which the current periodic orbit belongs. The user must provide indexes of the

three variables of interest.

plotfloquetmultHBM.m

Plots in a convenient way Floquet multipliers of the current active point (there are

Ndof multipliers for a periodic solution). The figure is made up of three parts :

on the right side, one can visualise Floquet multipliers in the complex plane and

compare them with the unit circle ; on the left side, two small graphs represent

the amplitude and the phase of Floquet multipliers as functions of the bifurcation

parameter λ.

This function can be used both for local or global plots.

Global plots :

plotbranchHBM.m

Plots an amplitude diagram for the current portion or branch. The user must define

the harmonic(s) number(s) and the variable(s) index(es) of interest.

plotbranchampphaseHBM.m

Plots an amplitude and phase diagram for the current portion or branch. The user

must define the harmonic(s) number(s) and the variable(s) index(es) of interest.

1.9. STABILITY ANALYSIS 35

plotbranchbifHBM.m

Plots an amplitude diagram for the current portion or branch, and mark the type

of bifurcation (require stability analysis). The user must define the harmonic(s)

number(s) and the variable(s) index(es) of interest, as well as the figure’s number

(avoid 2, which is the main diagram).

plotfloquetmultHBM.m

Plots in a convenient way Floquet multipliers of all analysed points (if the original

physical system size is Ndof , there are Ndof multipliers per point). The figure is

made up of three parts : on the right side, one can visualise Floquet multipliers

in the complex plane and compare them with the unit circle ; on the left side,

two small graphs represent the amplitude and the phase of Floquet multipliers as

functions of the bifurcation parameter λ.

This function can serve both for local or global plots.

For more details on any of these function, please type in the Matlab command

line :

> help function_name

1.9 STABILITY ANALYSIS

Different algorithms are implemented in Manlab in order to analyse the linear

stability of dynamical systems. If the check box “stability analysis” is enabled, then

the linear stability analysis of solutions is performed along the computed branches.

The algorithm used depends on the type of the solutions under study and on the

selected algorithm : time-domain or frequency-domain.

Those algorithms rely on the computation of the jacobian matrix. Thus, some

new functions (methods of your object) are needed to evaluate this matrix. The

functions needed, as well as the algorithms used are detailed hereafter.

36 CHAPTER 1. HOW TO USE MANLAB

Note that users must :

• set ML_stability=1 in their launching script in order to enable stability

analysis. Then, they can temporary disable the feature, compute branches

without it, re-enable the feature, etc...

• properly define the ML_varstab vector and the jacobian functions

1.9.1 Equilibrium point

If the user is studying equilibrium points (or fixed-points) of a dynamical system,

both algorithms are equivalent. However, the user is reminded that each algorithm

uses its own jacobian functions, as explain below.

In this case, the linear stability analysis consists in computing the eigenvalues

νi (and eigenvectors) of the jacobian matrix at each point of analysis (there are

nbptstroncon such points by portion). If any of the eigenvalues has a positive real

part, then the current point (the associated periodic solution) is unstable. When

following a branch that is, at first, stable, a bifurcation can be detected when one

(or possibly more) of the eigenvalues crosses the imaginary axis.

1.9.2 Periodic orbits

If the user is studying periodic orbits of a dynamical system using the harmonic

balance method (HBM), as shown in some of the examples, the frequency-domain

method called Hill’s method is recommended, but the user can also use the time-

domain method called monodromy matrix method.

The default choice for the method used for computing the stability analysis is

Hill’s method, but can be overcome using the global variable ML_algostab in your

launching script :

1.9. STABILITY ANALYSIS 37

• ML_algostab=1 selects the monodromy matrix method (time-domain algo-

rithm)

• ML_algostab=2 selects Hill’s method (frequency-domain algorithm)

1.9.3 Methods used in the stability analysis

We describe here the two algorithm used for analysing the linear stability of fixed-

points and periodic orbits, together with the additional functions needed in your

object class directory.

Time-domain algorithm The time-domain method integrates the jacobian ma-

trix over one period to get the monodromy matrix. The integration is carried out

using a Runge-Kutta 4 algorithm on nech time samples. This sampling parameter

can be modified using the set_nech method that your object class has inherited

from the SYS class (see section 1.6.4 page 24).

The monodromy matrix method uses an additional function that returns the

jacobian matrix of the physical system called JT.m :

File : JT.m

function [DT] = JT(instance_yourobject , Ustab)

DT = [JT_1_1 , JT_1_2 , . . . ;

. . . ;

. . . , . . . , JT_Ndof_Ndof] ;

end

Ndof is the size of the original physical system (before quadratic recast and

HBM transformation) and Ustab, defined a little further, contains the values of the

needed variables and lambda.

38 CHAPTER 1. HOW TO USE MANLAB

Frequency-domain algorithm Hill’s method is fully described in [7]. It uses

the three additional functions J0.m, JL.m and JQ.m that must be placed in your

object class directory. They are defined as a decomposition of the jacobian matrix J

so that J0 is a constant matrix, JL is a linear operator and JQ a quadratic operator

on the variables given in Ustab4 : J = J0 + JL + JQ.

File : J0.m

function [D0] = J0 (instance_yourobj , Ustab)

D0 = [J0_1_1 , J0_2_1 , . . . ;

. . . ;

. . . , . . . , J0_Ndof_Ndof] ;

end

Only Ustab(end), which contains lambda, may be used in this function.

File : JL.m

function [DL] = JL(instance_yourobj , Ustab)

DL = [JL_1_1 , JL_2_1 , . . . ;

. . . ;

. . . , . . . , JL_Ndof_Ndof] ;

end

All components of Ustabmay be used in this function.

File : JQ.m

function [DQ] = JQ(instance_yourobj , Ustab , Vstab)

DQ = [JQ_1_1 , JQ_2_1 , . . . ;

. . . ;

. . . , . . . , JQ_Ndof_Ndof] ;

end

All components of Ustab and Vstabmay be used in this function.

4lambda and omega are not considered as “variables” in the context of the jacobian matrix

1.9. STABILITY ANALYSIS 39

1.9.4 Additional variables and parameters

The “Ustab” vector :

Ustab is a vector containing values of variables as well as the parameter λ, at

the current analysis point. Only the variables needed for the computation of the

jacobian matrix appear in this vector.

The indexes of these variables must be declared, in your launching script, in the

global variable ML_varstab using the following command :

ML_varstab = [var1_index, var2_index, ..., lambda_index, omega_index, H];

The “tolstab” parameter :

In order to improve the quality of the detection of bifurcation, a tolerance thresh-

old has been set on the stability test : a periodic solution will be declared unstable

if at least one of its Floquet multipliers modulus exceeds 1 + tolstab.

The default value for tolstab can be set through the global variable

ML_tolstab in your launching script. For example :

ML_tolstab = 1e-3;

The automatic default value is 1.0 10−4.

Please note that :

• variables indexes refer to their indexes in the “small” system state vector,

before HBM transformation (of size Neq)

• lambda and omega indexes refer to their indexes in the final vector U (of size

Neq + 1 for fixed-points, or Neq(2H + 1) + 1 or +2 for periodic orbits of forced

and free systems)

40 CHAPTER 1. HOW TO USE MANLAB

• The given value of H is the order of Fourier series truncation in Hill’s method.

It must be inferior or equal to the one used for the continuation. It must be

equal to 0 for equilibrium points.

This additional global variable definition might appear awkward, but evaluat-

ing the jacobian matrix generally requires only a few variables and this way of

proceeding will save a lot of computation-time, as compared to using the whole U

vector.

For more detailed information about Hill’s method, please refer to the article of

Lazarus et al. [7].

Chapter 2

EXTENDED FEATURES :

FORTRAN ACCELERATION

In order to improve Manlab, as the continuation of periodic orbits using the Har-

monic Balance Method leads to very large number of equations, an acceleration

strategy using Fortran is available.

2.1 INSTALLATION

2.1.1 Unix/Linux

Requirements :

Matlab releases R2008b and later have been successfully tested.

Fortran acceleration requires the MEX compilation utility available in MAT-

LAB (depending on your distribution), and a recent version of GFORTRAN (v4.0

or later is recommended). G95 have been reported to work, however some compi-

lation options might need to be changed in the Makefile.

41

42 CHAPTER 2. EXTENDED FEATURES : FORTRAN ACCELERATION

Setup :

• Run mex -config in the Matlab command line and then choose the ’GNU

compiler’ option.

• Check the generated options file named mexopts.sh : it will have written

g95 instead of gfortran (Mathworks developpers seem to ignore that g95 is

not the GNU fortran compiler), so make sure you correct this mistake first1

• Copy the file MANLAB/TEMPLATES/Makefile.unix to your class directory

and rename it Makefile

• Edit this file and check for correct paths to your Manlab and Matlab direc-

tories

For more details about configuring the MEX utility, please refer to MATLAB

documentation.

2.1.2 MacOS

Matlab releases R2009b and later have a MEX utility compatible with GFORTRAN

(v4.3 and later). Release R2008b have been reported to work like on Unix/Linux

systems.

The setup is the same as for Unix/Linux systems.

Some users reported a confusion between the mex command provided by Mat-

lab and some other tools. Please make sure you provide the full path to the mex

command in the Makefile you use.

1If you are lost and didn’t succeed the , open a terminal and try the command

locate mexopts.sh to locate the options file, then type sed -i ’s/g95/gfortran/g’

/my/path/to/mexopts.sh. This should do the job.

If you are lost even more, ask for your favorite geek to help you.

2.1. INSTALLATION 43

2.1.3 Windows

The use of Fortran acceleration is a bit more complex because of some obscure

upper-case details.

Requirements :

Matlab release R2009b has been successfully tested. Later releases should work

as well.

It use to work on previous releases, however, some option names for MEX have

changed since and we provide only valid Makefile for R2009b and later.

Make sure you have installed the following (free and open-source) softwares :

• Mingw (http://www.mingw.org/) –tested release : 20100909 (contains GCC

4.5.1)

• g95-mingw –tested release : g95 v0.91

• gnumex (http://gnumex.sourceforge.net/) –tested release : 2.01

Note that, until now, no other compiler than G95 has been working for building

MEX files under windows. In particular, we were unable to tackle the upper-case

problem with GFORTRAN.

Setup :

The setup is a bit more complicated but shouldn’t be too much of a challenge.

• Step 1 :

In the Matlab command line, start the GNUMEX utility by typing gnumex

once in the GNUMEX directory.

44 CHAPTER 2. EXTENDED FEATURES : FORTRAN ACCELERATION

Check the path to your MinGW root directory and to your MinGW\bin directory

for g95.exe.

Choose ’Fortran’ option with the ’g95’ compiler, language version ’95’. Op-

timisation level ’O3’ is recommended.

Build the option file, it should be named ’mexopts.bat’ and placed in the cor-

rect directory by default.

• Step 2 :

Copy the template Makefile.win provided in MANLAB\TEMPLATES to your

class directory and rename it Makefile.

Edit this file and change the paths to your Matlab and Manlab locations.

Make sure the path to the Fortran sources correspond to your problem type :

free=autonomous forced=non-autonomous

———— CAUTION ———

If you do not uncomment one of these two lines, an error will occur during

compilation, saying the include file fintrf_new.h cannot be found.

Save your Makefile.

• Step 3 :

Copy the YOURPATH\TO\MinGW\bin\mingw32-make.exe utility to your

C:\WINDOWS\SYSTEM32 directory and rename it make.exe.

In your launching script lance.m, the compilation command should be simi-

lar to the following :

[status,result]=dos(’cd @MYCLASS && make && cd ..’,’-echo’);

2.2. WRITING YOUR EQUATIONS IN FORTRAN 45

They should be written before all other commands except the ’addpath’ com-

mand.

That’s it !

In case you want to remove all the temporary files and the compiled files (in

order to disable Fortran acceleration), use make clean instead of make in the

commands above.

2.2 WRITING YOUR EQUATIONS IN FORTRAN

You will need to write only one file in Fortran language (preferably Fortran 95),

named petits_operateurs.f90 and located in the class directory of your project

(ie. @MYCLASS).

This file must contain a module named petits_operateurs with :

• the values of some parameters of your system. It enables you to define once

and for all the constants of the system that you can then use in your equa-

tions.

• the functions pC0, pC1, pL0, pL1, pQ and pM that correspond to your system’s

equations. It should look very much like the functions written in L0.m, L.m

and Q.m except for fortran-specific syntax, thus it is usually very little work to

translate the functions from the Matlab programming language to Fortran.

If you wish to use the stability analysis with Hill’s method, you can also accel-

erate the computation by writing your own jacobien.f90 file.

Check the examples provided using the HB demos (ie. the forced Duffing os-

cillator described in [7]) and make sure you use the same header (especially the

46 CHAPTER 2. EXTENDED FEATURES : FORTRAN ACCELERATION

#include command) as well as a good Fortran syntax. A good way to proceed is to

copy an existing file from an example and then to edit only the parameters and the

functions.

To test your code, go into the class directory in a terminal/console/command

line and type ’make’. It should try to compile your code together with the Fortran

sources of MANLAB-HB. In case error messages appear, try to debug your file

from the first error statement (as errors usually propagate and give multiple error

messages).

When your code compiles correctly, three new files will have been created :

L0.mexXXX, L.mexXXX and Q.mexXXX. The extension is platform-dependant, hence

XXXmight be glx, w32, or another one depending on you CPU type and OS. To test

the MEX-compiled operator functions, use the MATLAB command line and execute

manually the first lines in your launching script lance.mwhere ’ML_problem’ and

’ML_Ustart’ are defined. Then try :

>> R=get_R(ML_problem, ML_Ustart); norm(R)

It should work and return the norm of the residue for the given starting point.

2.3 GENERALNOTESONTHEUSEOFFORTRAN

WITH MANLAB

2.3.1 Parameters

Because it is painful to code and because the more exchanges between a Fortran

routine and Matlab, the slower it gets, the Fortran routines currently does not get

any of your object structure parameters.

Only H and Neq are automatically passed as explicit input arguments, the ob-

ject itself is a dummy argument. Thus, if one would ever want to change any of the

2.3. GENERAL NOTES ON THE USE OF FORTRAN WITH MANLAB 47

parameters used in the equations, one should do so by editing the source code in

petits_operateurs.f90 itself.

It is a huge difference with most non-Fortran examples where the parameters

of the system are defined in the ’lance.m’ script and then passed to the class-

constructor of the problem on the command :

>> ML_problem=MYOBJECT(H,Neq,param1,param2,...)

In a project using Fortran acceleration, changing the value of parameters only

in the launching script will NOT (unfortunately) affect the Fortran source code,

and thus the final computation.

2.3.2 Non-autonomous systems

As for now, the continuation of periodic orbit for non-autonomous systems is only

available for a given (constant) amplitude F of the source term. The angular fre-

quency ω is taken as the continuation parameter.

As a default, the source term for a periodically driven system has been written

in the following form : Fcos(ωt).

Thus, the fortran source file petits_operateurs.f90 should define a vari-

able ’F’ and its value.

Note also that the source term acts only on the first equation. If you want

to use the source term on a different coordinate of your system (say number 4,

for instance), you will need to edit the temporary Fortran file L0.F90 and change

Neq+1 to Neq+4 at the “forcing term” line (currently containing L0(Neq+1) = F),

and then compile again manually using a second make.

48 CHAPTER 2. EXTENDED FEATURES : FORTRAN ACCELERATION

2.4 A CLOSER LOOK ON “MAKE”

The make command –it is not a Matlab command, but a shell command– needs a

Makefile in the directory it is being run. Makefiles are platform dependant, and

require to be checked for correct paths and command names.

The provided Makefiles are designed to do two things when you execute ’make’

:

1. New versions of fortran source files are checked and then, if needed, the tem-

plate source files from Manlab are copied to your class directory : L0.F90,

L.F90, Q.F90 and Hill_mat.F90.

2. If any of the source files are newer than the compiled ones, or if compiled files

are missing, compilation is done using the MEX utility until all compiled files

are up-to-date.

Both steps can be performed manually, and for each of the three operators L0, L or

Q, using the commands :

• make X.F90 to copy the template file X.F90 from MANLAB-HB

• make X.mex* to compile the X.F90 and the using the MEX tool

To clean all compiled and temporary files use the shell command make clean.

To clean only the temporary files use the shell command make cleantmp.

You can modify the optimisation level of the fortran compiler by changing ’-O3’

to ’-O2’ or ’-O’.

A simple way to compile without optimisation and with debugging symbols is to

replace this with ’-g’ which is the debug flag. This can be useful if you need to debug

fully your mex files, but chances are you will never need to do such an unpleasant

work...

2.5. DEBUGGING FORTRAN MEX-FILES 49

Note that all shell commands may be run from the Matlab command line by

using the prefix !. The directory in which the shell command is run is the current

working directory of Matlab.

2.5 Debugging Fortran MEX-files

If there is a bug, despite a correct compilation, MATLAB is likely to crash (some-

times without warning!), and you might need a specific debugging tool for Fortran.

Please refer to Matlab documentation about MEX files written in Fortran.

Notice that most problems occur when the ML_Ustart variable does not have

the right size (because the size is not checked in the Fortran routines and this

might result in a segmentation fault), or when the system size Neq and harmonic

truncation H are not consistent in Matlab scripts and Fortan source code.

If you think there is a bug in the Fortran source code provided within Manlab,

please send a bug report to the first contact address. We will be happy to correct

any of those.

50 CHAPTER 2. EXTENDED FEATURES : FORTRAN ACCELERATION

Chapter 3

Theoretical elements

3.1 CONTINUATION

ANM is a continuation method to solve quadratic algebraïc nonlinear systems of

smooth equations:

R(U) = 0 with R ∈ Rn and U ∈ Rn+1 is the vector of unknowns (3.1)

One specificity of the ANM is to give access to solution branches, and not only

to solution points. To achieve this result, the vector of unknowns is written as a

power serie expansion (truncated at order m) of a variable a (the so-called path

parameter):

U(a) = Σm
i=0Uia

i, where Ui ∈ Rn, a ∈ R+, (3.2)

To change the truncation order m, see section 1.6.4 page 24.

More precisely, we only consider quadratic systems R:

R , L0 + L(U) + Q(U,U) with L0,L,Q ∈ Rn (3.3)

where L0 is a constant vector, L is a linear application, andQ is a bilinear form. The

ansazt (3.2) is used in equation (3.3), leading to a polynomial expression. Equation

51

52 CHAPTER 3. THEORETICAL ELEMENTS

(3.1) is then reduced to term-to-term equalization of each power of a, which leads

to a set of m+1 linear systems (since only the first m+1 powers of a are considered,

from 0 to m).

Let U0 be a solution vector :

• order 0 : L0 + L(U0) + Q(U0,U0) = 0, which is a trivial system since U0 is

solution of (3.3).

• order 1 : L(U1) + Q(U0,U1) + Q(U1,U0) = 0, this system can be rewritten

JU0
U1 = 0 where JU0

∈ Rn×n+1 is the jacobian matrix of R evaluated at U0.

• order p>1 : JU0
Up + Σp−1

i=1 Q(Ui,Up−i) = 0

The original nonlinear problem has then been reduced to a set of linear systems.

However, the path-parameter a has still to be defined. Following Cochelin et al.

([3]), the classical definition of the pseudo arclength a ,< U,U1 > is generalized

to:

a , Ut
1AU, (3.4)

where A is a diagonal matrix, which allows to consider only some components of U

for the definition of a. Once again, the use of the serie expansion (3.2) in (3.4), and

the term-to-term equalization for each power of a leads to;

• order 1 : Ut
1AU1 = 1

• order p>1 : Ut
1AUp = 0

To change the values of A, see section 1.6.4 page 24.

Remarks:

• Once each Up has been found, the validity domain of the serie expansion is

estimated through the calculation of an approximation of the convergence

3.1. CONTINUATION 53

radius amax of the serie, i.e. the interval [0 amax] for which ||R(U(a))|| ≤ ǫr.

The user-defined threshold ǫr is set through the graphical interface.

• The power serie expansion, and the convergence radius amax define a portion

of the branch. La décomposition en série, et son rayon de convergence. A new

portion, continuating the branch, can be determined if the final point of the

latest calculated portion is chosen as the starting point of the new portion

(possibly after a correction step). A solution branch is therefore found by

the ANM as a succession of portions, the length of which is automatically

determined (through the estimation of the convergence radius of each power

serie).

• Correction step: For reasons that wil be given later on, it may be useful to

launch a correction step. It brings the starting point right back on the solu-

tion. For example, this allows to avoid cumulative errors when calculating a

branch with many portions.

For correction, a Newton-Raphson method is implemented in Manlab be-

cause of its quadratic convergence rate (since the correction is performed from

solutions which are genrally close to the exact branch).

Starting from an approximate solution Uap, the correction ∆Ucor is seeked

such that R(Uap + ∆Ucor) = 0. This correction is obtained according to the

Newton-Raphson algorithm through an iterative process:

∆Ui+1 = −J−1
Uap+∆Ui

R(Uap + ∆Ui) (3.5)

∆Ucor = ∆Ui+1 when ∆Ui+1 −∆Ui ≤ ǫc where ǫc is a user-defined threshold.(3.6)

Since ∆Ucor ∈ Rn+1 and (3.5) is a system of n equations, an additional equa-

tion is required. We chose to impose in Manlab:

Ut
t∆Ui = 0 ∀i where Ut is defined by JUap

Ut = 0 (3.7)

54 CHAPTER 3. THEORETICAL ELEMENTS

This corresponds to impose that the direction followed by the correction algo-

rithm to get closer to the branch is perpendicular to the branch.

Avantages of the ANM:

• The solution branch is known analatytically for each portion.

• Robustness of the method compared to other methods of continuation.

• Low computational cost.

• The quadratic nature of the equations makes the exact calculation of the tan-

gent matrix an easy task. 1.

3.2 BRANCHSWITCHINGTHROUGHPERTURBA-

TION

A classical strategy for the switch of branch at a bifurcation consists in slightly

modifying the original equations by the addition of a low-norm perturbation vec-

tor. This transform the exact bifurcations into a perturbed bifurcations (see figure

3.1). The choise of the amplitude of the perturbation can be difficul with classical

predictor-corretor schemes. The amplitude should be small enough to stay closed

to the solution of the unpertutbed system, but not too small to avoid a systematic

jump over the bifurcation. Du to its adaptative stepsize the ANM procedure is

robust and succesfull almost whatver th amplitude of the perturbation.

In Manlab, the perturbation vector is a random vector, the norm and the sign

of which are controlled through the graphical interface. This vector is used by the

1It is calculted by Manlab using L and Q.

3.2. BRANCH SWITCHING THROUGH PERTURBATION 55

Quasi−bifurcation

Perturbation

UbUb

Exact bifurcation

Figure 3.1: Transformation of an exact bifurcation into a perturbed bifurcation

through the addition of a small perturbation.

@SYS class in a transparent way, and is inserted in the original problem as shown

below:

Rp(U) = R(U) + cP

= L0 + L(U) + Q(U, U) + cP
(3.8)

where Rp(U) is the perturbed problem, P a normalized vector of constant random

numbers, and c the intensity of the perturbation. If R(U) has an exact bifurcation

at a point Ub, it corresponds graphically to a crossing of two solution branches. The

addition of a perturbation transforms the crossing into two a non crossing where

the two branches remain separate2 in the neighbourhood of Ub[5]. The distance

between branches of the original and the perturbated problem depends on the in-

tensity of the perturbation c. Moreover, changing the sign of c allows to have a

symmetrical quasi-bifurcation. It is then possible to use the two perturbated plots

to turn "left" or "right" at a (quasi-)bifurcation point, as shown in figure 3.2.

Finally, in order to go from the original to the perturbed problem and vice versa,

a correction step is mandatory. This correction step is automatically launched by

Manlab when needed. It uses a Newton-Raphson algorithm. The combination

of different (positive and negative) values of the intensity of the perturbation and

2The method of the additional random vector, though not infallible (the crossing might remain),

proves to work very well with a probability of failure close to zero.

56 CHAPTER 3. THEORETICAL ELEMENTS

Quasi bifurcation + Quasi bifurcation −

c > 0 c < 0

Figure 3.2: Influence of the sign of c on the quasi-bifurcation.

P=0

P=+c

P=+c

P=0

P=0

P=0

P=0

P=−c

P=−c

P=0

Figure 3.3: Branch switching through a perturbation method

3.2. BRANCH SWITCHING THROUGH PERTURBATION 57

several correction steps, Manlab allows the user to plot the different branches

starting from a bifurcation point, as explained in figure 3.3.

58 CHAPTER 3. THEORETICAL ELEMENTS

Chapter 4

Simple Examples

4.1 THE FIRST EXAMPLE : “QUADMINI”

The following examples can be found in MANLAB/BASIC-EXAMPLES/.

4.1.1 Problem statement

Lets consider the following quadratic problem with a single equation and two un-

knowns:

R(U) = R([x, y]T) = a + bx + cy + dxy + ex2 + fy2 (4.1)

This problem can be recasted as

R(U) = L0 + L(U) + Q(U, U) (4.2)

with 





L0 = a

L(U) = bx + cy

Q(U1, U2) = dx1y2 + ex1x2 + fy1y2

(4.3)

59

60 CHAPTER 4. SIMPLE EXAMPLES

!! !"#$!"#% !"#& !"#' " "#' "#&
!"#'

"

"#'

"#&

"#%

"#$

!

!#'
()*+,*--.

/!0'1
/!0'1

2,*345.67.,89,:..6!6

2,*345.67.,89,:;.6<6

2,*345.6.=*48.6

Diagram

Perturbated branch -

Perturbated branch +

"Exact" branch +

Figure 4.1: Diagram of the QUADMINI problem when a = 0, b = 2, c = −2.3, d = 1,

e = 2, and f = 3.2. The diagram shows the "exact" branch (a circle), as well as

two perturbed branches (noted + and −) when the intensity of the perturbation is

c = 1e− 1.

4.1. THE FIRST EXAMPLE : “QUADMINI” 61

4.1.2 Definition of the user problem

Here are 4 files allowing to perform the continuation of the solutions with Manlab

File : QUADMINI.m

function obj = QUADMINI(a , b , c , d , e , f)

% Creation of the basic ob j e c t SYS

% with 1 equation , 2 unknowns , ’LQ’ type .

sys = SYS(2) ;

% Creation of the structure o f data v i s i b l e by the methods

% embedded in the c lass

obj . a = a ;

obj . b = b ;

obj . c = c ;

obj . d = d ;

obj . e = e ;

obj . f = f ;

% Creation of c lass ’QUADMINI’ with the structure o f data obj ,

% and deriving from c lass SYS

obj = c lass (obj , ’QUADMINI’ , sys) ;

File : L0.m

function L0 = L0(obj)

L0 = obj . a ;

File : L.m

function L = L(obj ,U)

L = obj . b ∗ U(1) + obj . c ∗ U(2) ;

File : Q.m

function Q = Q(obj ,U1,U2)

Q = obj . d ∗ U1(1) ∗ U2(2) + obj . e ∗ U1(1) ∗ U2(1) + obj . f ∗ U1(2) ∗ U2(2) ;

62 CHAPTER 4. SIMPLE EXAMPLES

4.1.3 Launching the continuation

> manlabinit;

> ML_problem = QUADMINI(0,2,-2.3,1,2,3.2);

> ML_Ustart = [0;0];

> ML_dispvars = [1,2];

> manlabstart;

4.2 EXAMPLE WITH BIFURCATION POINTS

4.2.1 Problem statement

Lets consider the following problem with a single equation and two unknowns:

R(U) = R([x, y]T) = (x− y2)(y − (x− 2)2) + a (4.4)

where a is a constant parameter. Thanks to the new variable v = x − y2 and

w = y − (x− 2)2, R(U) can be rewritten as:

R(U) = R([x, y, v, w]T) =







vw + a = 0

x− v − y2 = 0

4− 4x + w − y + x2 = 0

(4.5)

which can be recasted quadratically

R(U) = L0 + L(U) + Q(U, U) (4.6)

with

L0 =







a

0

4

, L(U) =







0

x− v

−4x + w − y

, Q(U1, U2) =







v1w2

−y1y2

x1x2

(4.7)

4.2. EXAMPLE WITH BIFURCATION POINTS 63

0 1 2 3 4 5 6 7 8 9
−4

−2

0

2

4

6

8
(1,2)
(1,2)

Figure 4.2: Continuation diagram of the QUADBIF problem, composed of two

parabolas intersecting at two bifurcation points.

1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

(1,2)
(1,2)

Branche perturbéePerturbated branch

Figure 4.3: Zoom on the continuation diagram of the QUADBIF problem around

one bifurcation point. The use of a perturbated branch allowed the switch between

one parabola and the other.

64 CHAPTER 4. SIMPLE EXAMPLES

4.2.2 Definition of the user problem

Here are 4 files allowing to perform the continuation of the solutions with Manlab

File : QUADBIF.m

function obj = QUADBIF(a)

% Creation of the basic ob j e c t SYS

% with 3 equations , 4 unknowns , ’LQ’ type .

sys = SYS(4) ;

% Creation of the structure o f data v i s i b l e by the methods

% embedded in the c lass

obj . a = a ;

% Creation of c lass ’QUADBIF’ with the structure o f data obj ,

% and deriving from c lass SYS

obj = c lass (obj , ’QUADBIF’ , sys) ;

% U = [x , y , v , w]

File : L0.m

function L0 = L0(obj)

L0 = zeros (3 , 1) ;

L0 (1) = obj . a ;

L0 (2) = 0;

L0 (3) = 4;

File : L.m

function L = L(obj ,U)

L = zeros (3 , 1) ;

L(1) = 0;

L(2) = U(1)−U(3) ;

L(3) = −4∗U(1) + U(4) − U(2) ;

File : Q.m

function Q = Q(obj ,U1,U2)

Q = zeros (3 , 1) ;

4.3. A MECHANICAL EXAMPLE : BARRES 65

Q(1) = U1(3) ∗ U2(4) ;

Q(2) = −U1(2) ∗ U2(2) ;

Q(3) = U1(1) ∗ U2(1) ;

4.2.3 Launching the continuation

> manlabinit;

> ML_problem = QUADBIF(0);

% changing the order of the serie expansion (ANM):

> ML_problem = set_ordre(ML_problem, 25);

> ML_Ustart = [2;sqrt(2);0;0];

> ML_dispvars = [1,2];

> manlabstart;

4.3 A MECHANICAL EXAMPLE : BARRES

MANLAB/EXAMPLES/BARRES/

This is the 2 bar system in compression as described in [8].

• u and v are the displacements of the point of loading

• λ is the load parameter

• we use the additional variable : w = −4u + u2 + v2

Equilibrium equations:

w(u− 2) = lambda

2v + vw = 0

The unknowns are : U = [u v w λ]

66 CHAPTER 4. SIMPLE EXAMPLES

Launching the example: Type lance to launch the example.

4.4 A CHEMICAL REACTION EXAMPLE : BRUS-

SELATOR

MANLAB/EXAMPLES/BRUSSELATOR/

A discretised version of the chemical reaction model known as BRUSSELATOR.

References : see Seydel’s book [2], chapter 5 page 188.

Initial equations:

2−7u1 +u1u1u2+λ(u3− u1) = 0

6u1 −u1u1u2 + 10λ(u4− u2) = 0

2−7u3 +u3u3u4+λ(u1 + u5− 2u3) = 0

6u3 −u3u3u4 + 10λ(u2 + u6− 2u4) = 0

2−7u5 +u5u5u6+λ(u3− u5) = 0

6u5 −u5u5u6 + 10λ(u4 + u6) = 0

Easily put under quadratic form using the additional variables :

u7 = u1u1

u8 = u3u3

u9 = u5u5

It is then a problem with 9 equations and 10 unknowns : U = [u1 u2 u9 lambda]

Launching the example: To launch the example, just go to the right directory

and type lance in the Matlab command line.

4.5. EXAMPLE OF AN ELECTRO-CHEMICAL REACTION 67

4.5 EXAMPLE OF AN ELECTRO-CHEMICAL RE-

ACTION

MANLAB/EXAMPLES/ECrea/

Not documented yet.

4.6 BUCKLING INSTABILITY

MANLAB/EXAMPLES/STATIC/DUFFING_FLAMBAGE_STAB/

Buckling of a DUFFING like equation:

Initial equation: Duffing equation with a buckling parameter lambda writes:

u′′ + µu′ + (ω2
0 − λ)u + Γu3 = 0

with :

• u an unknown function of time

• λ a bufurcation parameter (real parameter)

• ω0 the natural frequency (real parameter)

• µ the damping coefficient (real parameter)

• Γ the non-linearity coefficient

First order dynamical system: We define v = u′ to obtain:

u′ = +v

v′ = −ω2
0u− µv +λu −Γu3

68 CHAPTER 4. SIMPLE EXAMPLES

Quadratic recast: We define w = u2 and write:

u′ = v

v′ = −ω2
0u− µv +λu− Γuw

0 = +w −u2

In statics, u’=v=0 and v’=0 so that:

0 = 0 −ω2
0u+ λu −Γuw

0 = 0 +w −u2

is a quadratic algebraic system of the form L0(U) + L(U) + Q(U, U) = 0 with U =

[u w λ].

The Jacobian of the initial dynamical system is:

JT =




0 1

−ω2
0 + λ− 3Γu2 −mu



 .

Launching the example: To launch the example, edit the lance.m script and

correct the path to your Manlab directory, then type lance in the Matlab com-

mand line.

Chapter 5

Advanced Examples I : periodic

orbits using HBM

The examples of this chapter show the path-following of periodic orbits of non-

linear dynamical systems using high-order harmonic balance. The reference article

for the method of combining HBM with Manlab ANM continuation is [9]. You will

find these examples in the directory:

MANLAB/EXAMPLES/HBM/

5.1 VAN DER POL OSCILLATOR

MANLAB/EXAMPLES/HBM/VANDERPOL/

This example is detailed and commented in [9].

To launch the example, check the lance.m script for correct path definition and

then type lance in the Matlab command line.

69

70 CHAPTER 5. ADVANCED EXAMPLES I

5.2 THE ROSSLER MODEL

MANLAB/EXAMPLES/HBM/ROSSLER/

Model equation:

x′ = −y − z

y′ = x + a ∗ y

z′ = b + z(x− λ)

x(t), y(t), z(t) are unknown functions. a,b,c real parameters.

Quadratic recast:

x′ = −y − z

y′ = x + a ∗ y

z′ = b −lambda ∗ z +z ∗ x

With Z(t) = [x y z] (Neq=3) the system becomes m(Z ′) = c0 + l0(Z) + λl1(Z) +

q(Z, Z) and is then treated with HBM.

Launching the example: To launch the example, check the path definition in

the lance.m script and then type lance in the Matlab command line.

5.3 PHYSICAL MODEL OF A CLARINET

MANLAB/EXAMPLES/HBM/CLARINETTE/

This model is taken from the work of Silva et al. presented in [10].

5.3. PHYSICAL MODEL OF A CLARINET 71

Model equations:

x′′ + qrωrx
′ + ω2

rx = ω2
rp (5.1)

p′′n + 2αncp
′

n + ω2
npn = 2c/Lu′ ∀n = 1..Nm (5.2)

u = ζ(1− γ + x)
√

(γ − p) (5.3)

p = p1 + ... + pN (5.4)

The unknowns are x(t) , pn(t) and their derivatives, u(t)

Real parameter : qr, ωr, αn, c, ωn, L, ζ

Number of acoustical modes : Nm

Bifurcation parameter : γ

1st order DS and quadratic recast: We set y = x′, zn = p′n and v =
√

(γ − p)

then:

x′ = y

y′ = ω2
r(p1 + ... + pN)− qrωry − ω2

rx

p′n = zn for n = 1..Nm

z′n − 2c/Lu′ = −2αnczn − ω2
npn for n = 1..Nm

0 = −u + ζ(1− γ + x)v

0 = −v2 + γ − p

With Z(t) = [x y p1 ... pn z1 ...zn u v] (Neq = 2 ∗ Nm + 4) the system becomes :

m(Z ′) = λc1 + l0(Z) + λl1(Z) + q(Z, Z). It is then treated using HBM.

Launching the example: To launch the example, first check the path definition

in lance.m and then type lance in the Matlab command line.

72 CHAPTER 5. ADVANCED EXAMPLES I

Chapter 6

Advanced Examples II : stability of

periodic orbits using fortran

acceleration

In this chapter we describe examples that use HBM for periodic orbits continuation

with stability analysis. Some examples use fortran acceleration.

6.1 FORCED DUFFING OSCILLATOR

MANLAB/EXAMPLES/HBM/FORCED_DUFFING/

This example uses fortran acceleration and stability analysis.

Initial equation: Duffing equation reads :

u′′ + µu′ + ω2
0u + Γu3 = Fcos(λt)

where u(t) is the unknown function and λ a real-valued parameter.

73

74 CHAPTER 6. ADVANCED EXAMPLES II

1st order DS and quadratic recast: Using v = u′ and w = u2, we rewrite the

original equation as:

u′ = 0 +v

v′ = FFcos(lambdat) −ome02u−muv −Gamma ∗ uw

0 = 0 +w −u2

This system is then treated using the HBM, as described in [9].

Launching the example: To launch the example, check the paths definitions

in lance.m and @DUFF1HB/Makefile (if you are using Windows, copy instead

the file Makefile.win from the MANLAB\TEMPLATES\ directory), and then type

lance in the Matlab command line.

6.2 FORCEDDUFFINGOSCILLATORWITHPARA-

METRIC EXCITATION

MANLAB/EXAMPLES/HBM/PARAMEXC_DUFFING/

This example does not use the Fortran acceleration.

Initial dynamical system:

u′′ + µu′ + ω2
0u + Γu3 + δ(ucos(2Ωt)) = FcosΩt

where u(t) is a real unknown time function. The other parameters are real.

6.3. NONLINEAR MODES OF A TWO-SPRING, ONE-MASS SYSTEM 75

First order dynamical system: We introduce v = u′ to transform the initial

equation into the first order dynamical system:

u′ = v

v′ = −ω2
0u− µv − Γu3 + Fcos(Ωt) + δucos(2Ωt)

The Jacobian writes:

J(t) =




0 1

−ω2
0 − 3Γu2 + δcos(2Ωt) −µ



 .

Quadratic recast: We then introduce v = u′, w = u2 and x = cos(2Ωt) to trans-

form the previous system into the first order system with quadratic non-linearities:

u′ = v

v′ = Fcos(Ωt) −µv − ω2
0u −Γuw − δux

0 = −w +u2

0 = cos(2Ωt) −x

with Neq=4 equations.

The Jacobian now writes:

J(t) =




0 1

−ω2
0 − 3Γu2 + δx −µ



 .

Launching the example: To launch the example, check the path definition in

lance.m and then type lance in the Matlab command line.

6.3 NONLINEARMODESOFATWO-SPRING,ONE-

MASS SYSTEM

MANLAB/EXAMPLES/HBM/DEUX_RESSORTS/

This example uses stability analysis and fortran acceleration.

76 CHAPTER 6. ADVANCED EXAMPLES II

Schematics of the model:

\| spring 1

\|------------O mass

\| |

| spring 2

|

- - -

\ \ \

Notations:

• u1(t) : x displacement of the mass

• u2(t) : y displacement of the mass

• ei = ui + 1/2(u2
1 + u2

2) : strain for spring i (Green-lagrange)

• Ni = kiei : spring force (ki : stiffness)

• W = 1
2
k1e

2
1 + 1

2
k2e

2
2 : strain energy

• m mass (m=1)

Model equations: The two governing equations are :

mu′′

1 +
∂W

∂u1

= 0

mu′′

2 +
∂W

∂u2

= 0

With the given notations, it becomes :

mu′′

1 + N1(1 + u1) + N2(u1) = 0

mu′′

2 + N1(u2) + N2(1 + u2) = 0

6.3. NONLINEAR MODES OF A TWO-SPRING, ONE-MASS SYSTEM 77

The system is autonomous and conservative. It has a first integral correspond-

ing to the conservation of the total energy. It is quite different from dissipative

systems, in terms of periodic solutions. In dissipative systems, periodic solution

are generically isolated and an external parameter is required in order to continue

the family of periodic orbits (see Van der Pol, for example).

In conservative (Hamiltonian) system, periodic orbit generally belongs to one-

dimensional family of periodic solution, parametrised by the value of the first inte-

gral (here, the total energy). These one-dimensional families of periodic orbits are

the non linear modes of the system.

It is convenient to have the same framework and the same software to find

the branch of periodic solution of dissipative system and the non linear modes

of conservative ones. To put the conservative system into the usual framework

(dissipative with one parameter) we add dissipative terms λu′

1 and λu2′ in each

equation :

mu′′

1 + λu′

1 + N1(1 + u1) + N2(u1) = 0

mu′′

2 + λu′

2 + N1(u2) + N2(1 + u2) = 0

This new system is dissipative and it has a free parameter, λ. It is easy to show

that periodic solution can occur only when lambda is zero. So, this dissipative (with

a parameter) has the same periodic solution as the conservative one (see Munoz-

Almaraz Freire Galan Doedel Vanderbauwhede "Continuation of periodic orbits in

conservative and Hamiltonian system", Physica D, 181, 1-38, 2003)

Quadratic recast: We transform into first order system by introducing v1 = u′

1

and v2 = u′

2.

Finally we have a system of Neq = 6 equations (ODEs and AEs) with quadratic

78 CHAPTER 6. ADVANCED EXAMPLES II

polynomial NL :

u′

1 = v1

u′

2 = v2

v′

1 = − 1
m

(N1 +λu′

1 +u1(N1 + N2))

v′

2 = − 1
m

(N2 +λu′

2 +u2(N1 + N2))

0 = N1 − k1u1 −1
2
k1(u

2
1 + u2

2)

0 = N2 − k2u2 −1
2
k2(u

2
1 + u2

2)

This system is then treated using HBM.

Launching the example: To launch the example, check the paths definitions

in lance.m and @DEUXRES/Makefile (if you are using Windows, copy instead

the file Makefile.win from the MANLAB\TEMPLATES\ directory), and then type

lance in the Matlab command line.

6.4 FREE DUFFING OSCILLATOR

MANLAB/EXAMPLES/HBM/FREE_DUFFING/

This example uses stability analysis and fortran acceleration.

Initial dynamical system:

u′′ + λu′ + ω2
0u + Γu3 = 0

where u(t) is a real unknown time function. The other parameters are real.

First order dynamical system and quadratic recast: We introduce v = u′

and w = u2 to transform the previous equation into:

u′ = v

v′ = −ω2
0u− λv −Γu3

0 = w −u2

6.5. FREE DUFFING OSCILLATOR WITH ESSENTIAL N.L. 79

with Neq = 3 equations.

The system is then treated using HBM : periodic orbits arise when λ→ 0.

The Jacobian used for stability analysis is written:

J(t) =




0 1

−ω2
0 − 3Γu2 −µ



 .

Launching the example: To launch the example, check the paths definitions

in lance.m and @DUFF1HB/Makefile (if you are using Windows, copy instead

the file Makefile.win from the MANLAB\TEMPLATES\ directory), and then type

lance in the Matlab command line.

6.5 FREE DUFFING OSCILLATOR WITH ESSEN-

TIAL N.L.

MANLAB/EXAMPLES/HBM/FREE_DUFFING_ESSENTIAL/

This example uses stability analysis and fortran acceleration.

This example uses the same equation as the previous one, but in the special

case of ω0 = 0.

See previous example for details.

6.6 A 2:1 INTERNAL RESONANCE SYSTEM

MANLAB/EXAMPLES/HBM/RESONANCE_1_2/

This example uses stability analysis but not the fortran acceleration.

The system is a 2DOF oscillator that possesses a 2:1 internal resonance.

See references : [11] and [12].

80 CHAPTER 6. ADVANCED EXAMPLES II

Initial dynamical system

u′′

1 + µ1u
′ + ω2

1u1 + β1u1u2 = Fcos(ωt)u′′

2 + µ2u
′ + ω2

2u2 + β2u
2
1 = 0

u1(t), u2(t) are real unknown time functions. The other parameters are real.

First order dynamical system We introduce v1 = u1′ and v2 = u2′ to transform

the previous system into the first order, quadratic polynomial, dynamical system:

u′

1 = +v1

u′

2 = +v2

v′

1 = Fcos(ωt) −ω2
1u1 − µ1v1 −β1u1u2

v′

2 = 0 −ω2
2u2 − µ2v2 −β2u

2
1.

The Jacobian writes:

J =











0 0 1 0

0 0 0 1

−ω2
1 − β1u2 −β1u1 −µ1 0

−2β2u1 −ω2
2 0 −µ2











.

or, in the required form for Hill’s method:

J0 =











0 0 1 0

0 0 0 1

−ω2
1 0 −µ1 0

0 −ω2
2 0 −µ2











JL =











0 0 0 0

0 0 0 0

−β1u2 −β1u1 0 0

−2β2u1 0 0 0











JQ = 0.

6.7. NONLINEAR NORMAL MODES OF A 2DOF SYSTEM 81

Launching the example Three scripts allow to launch the example :

• lance_omeg1.m : low-frequency excitation at ω. Two Neimark-Sacker (NS)

bifurcations are found for ω = 0.9895 and ω = 1.008.

• lance_omeg2_Om.m : high-frequency excitation at ω. Two period-doubling

(PD) bifurcations are found.

• lance_omeg2.2Om.m : high-frequency excitation at 2ω. Enables to continue

the branches from the PD.

Edit each launching script and check the path definition before executing by

typing its name in the Matlab command line.

6.7 NONLINEARNORMALMODESOFA 2DOFSYS-

TEM

MANLAB/EXAMPLES/NNM_2DDL_CUBIC

This example uses stability analysis and fortran acceleration.

The system of this example is discussed in [13].

Initial dynamical system:

u′′

1 + λu1 + 2u1 − u2 + 0.5u3
1 = 0

u′′

2 + λu2 + 2u2 − u1 = 0

u1(t) and u2(t) are two real unknown time functions. The other parameters are

real.

82 CHAPTER 6. ADVANCED EXAMPLES II

First order dynamical system: We introduce v1 = u′

1 and v2 = u′

2 to transform

the initial system into:

u′

1 = v1

u′

2 = v2

v′

1 = −2u1 + u2 −λv1 −
1
2
u3

1

v′

2 = −2u2 + u1 −λv2.

The Jacobian writes:

J(t) =











0 0 1 0

0 0 0 1

−2− 3
2
u2

1 1 −λ0

1 −2 0 −λ











.

Quadratic dynamical system: We introduce w = u2
1 to transform the previous

system into:

u′

1 = v1

u′

2 = v2

v′

1 = −2u1 + u2 −λv1 −
1
2
u3

1

v′

2 = −2u2 + u1 −λv2.

0 = w −u2
1.

The system is then treated using HBM.

Launching the example: There are two scripts to launch the example:

• lance.m : standard system

• lanceNRJ.m : standard system with additional energy equation

To launch the example, check the paths definitions in each script and in the cor-

responding Makefile (if you are usingWindows, copy instead the file Makefile.win

from the MANLAB\TEMPLATES\ directory), and then execute it by typing its name

in the Matlab command line.

Bibliography

[1] E.J. Doedel, H. Keller, and J. Kernevez. Numerical analysis and control of

bifurcation problems (i) bifurcation in finite dimension. International journal

of bifurcation and chaos, 1:493–520, 1991.

[2] R. Seydel. Practical Bifurcation and Stability Analysis, from equilibrium to

chaos. Springer-Verlag, second edition, 1994.

[3] B. Cochelin, N. Damil, and M. Potier-Ferry. Asymptotic numerical methods

and pade approximants for non-linear elastic structures. International jour-

nal for numerical methods in engineering, 37:1187–1213, 1994.

[4] B. Cochelin, N. Damil, and M. Potier-Ferry. Méthode asymptotique numérique.

Hermes Lavoisier, 2007.

[5] K. Georg and E.L. Allgower. Numerical continuation method, an introduc-

tion. In Springer Series in Comptutational Mathematics, volume 13. Springer-

Verlag, 1990.

[6] E.J. Doedel. Numerical Continuation methods for dynamical systems, chapter

Lecture notes on numerical analysis of nonlinear equations, pages 1–49. B.

Krauskopf H.M. Osinga J. Galan-Vioque Eds, Springer Verlag, 2007.

[7] Arnaud Lazarus and Olivier Thomas. A harmonic-based method for comput-

ing the stability of periodic solutions of dynamical systems. Comptes Rendus

Mécanique, 338(9):510 – 517, 2010.

83

84 BIBLIOGRAPHY

[8] S. Baguet and B. Cochelin. On the behaviour of the anm continuation in the

presence of bifurcations. Communications in numerical methods in engineer-

ing, 19:459–471, 2003.

[9] Bruno Cochelin and Christophe Vergez. A high order purely frequency-based

harmonic balance formulation for continuation of periodic solutions. Journal

of Sound and Vibration, 324:243–262, 2009.

[10] Fabrice Silva, Vincent Debut, Jean Kergomard, Christophe Vergez, Aude

Lizée Deblevid, and Philippe Guillemain. Simulation of single reed instru-

ments oscillations based on modal decomposition of bore and reed dynam-

ics. In Proceedings of the International Congress of Acoustics, Madrid, Spain,

September 2007.

[11] A.H. Nayfeh and D.T. Mook. Nonlinear Oscillations. Wiley, 1979.

[12] O. Thomas, C. Touze, and A. Chaigne. Non-linear vibrations of free-edge thin

spherical shells: modal interaction rules and 1:1:2 internal resonance. Inter-

national Journal of Solids and Structures, 42:3339–3373, 2005.

[13] G. Kerschen, M. Peeters, J.C. Golinval, and A.F. Vakakis. Nonlinear normal

modes, part i: A useful framework for the structural dynamicist. Mechanical

Systems and Signal Processing, 23(1):170 – 194, 2009. Special Issue: Non-

linear Structural Dynamics.

