
USER GUIDE MANLAB 1.0

Credits:

Software written by Remi Arquier

Contacts:

Bruno Cochelin, cochelin@lma.cnrs-mrs.fr

Christophe Vergez, vergez@lma.cnrs-mrs.fr

April 2, 2009

2

Contents

1 HOW TO USE MANLAB 7

1.1 What is Manlab . 7

1.2 PREREQUISITE . 9

1.2.1 Theoretical background . 9

1.2.2 Matlab prerequisite . 9

1.3 HOW TO GIVE THE R VECTOR IN MANLB 9

1.4 INSTALLATION . 10

1.5 Quick start . 11

1.5.1 How to launch examples ? . 11

1.5.2 Simple detailed example . 11

1.5.3 Construction of the PARABOLE object 12

1.5.4 Functions L0, L, et Q . 13

1.5.5 Launching script . 14

1.6 A CLOSER LOOK . 15

1.6.1 Classes and object-oriented programming within Matlab . . . 15

1.6.2 Definition of the user system (type ’LQ’) 18

1.6.3 Launching . 19

3

4 CONTENTS

1.6.4 The class SYS . 22

1.7 DETAILS OF THE GRAPHICAL INTERFACE 23

1.7.1 "Man" frame . 23

1.7.2 Frame "Correction" . 24

1.7.3 Frame "Perturbation" . 24

1.7.4 Frame "Visualisation" . 25

1.7.5 Frame "Export" . 25

1.7.6 Frame "Erase" . 26

1.7.7 Frame "Point" . 26

1.7.8 Frame "Diagram" . 26

1.7.9 Jump . 26

1.8 USER-DEFINED PLOTS . 27

1.8.1 Local user-defined plot . 27

1.8.2 Global user-defined plot . 28

2 Theoretical elements 29

2.1 CONTINUATION . 29

2.2 BRANCH SWITCHING THROUGH PERTURBATION 32

3 Examples 37

3.1 SIMPLE EXAMPLE . 37

3.1.1 Problem statement . 37

3.1.2 Definition of the user problem 37

3.1.3 Launching the continuation . 40

CONTENTS 5

3.2 EXAMPLE WITH BIFURCATION POINTS 40

3.2.1 Problem statement . 40

3.2.2 Definition of the user problem 42

3.2.3 Launching the continuation . 43

6 CONTENTS

Chapter 1

HOW TO USE MANLAB

1.1 What is Manlab

In many scientific areas, one wants to solve nonlinear algebraic systems of equa-

tions of the form 1

R(U) = 0 (1.1)

where R is a vector of n equations and U a vector of n + 1 unknowns. When R is

smooth, the solutions of (1.1) is made of one or sevral continuous branches. The

drawing of these branches in a (Ui, Uj) plane is called a bifurcation diagram . Here,

Ui and Uj designate two components of the vector U (see figure 1.1 for an illustra-

tion).

A classical strategy for solving (1.1) is to continue the branches of solutions from

given solution points. This means to travel on a branch of solutions, to detect when

another branch crosses (bifurcation) and, if desired, to switch to the new branch.

This continuation process is also refered to as path following technique [1, 2] .

Manlab is a graphical interactive software for the continuation of branches of

1In scientific literature related to continuation, the system (1.1) is often written R(U, λ) = 0

where R is a system of n equations, U ∈ R
n a vector of unknowns and λ ∈ R a parameter

7

8 CHAPTER 1. HOW TO USE MANLAB

Ui

Uj

Figure 1.1: Illustration of a bifurcation diagram showing various branches of solu-

tions.

solutions of system (1.1). Its solver is based on the Asymptotic Numerical Method

(ANM in english, MAN in french)). At each step of continuation, the branch of so-

lutions is given by a power series expansion with respect to the pseudo-arc length

parameter. By using a high order of truncature, a continuous acurate description

of the solution branches is obtained. Because the series contain many usefull in-

formation, the continuation and the detction of bifurcation is very robust [3, 4].

Manlab is an object-oriented Matlab program. Its graphical interface allows

the interactive control of the continuation process: computation of a portion of a

branch, choice of a new branch at a bifurcation point, reverse direction of con-

tinuation on the same branch, jump, visualization of user-defined quantities at a

particular solution point, selection and deletion of a branch, or of one of its por-

tion. This set of functions proved to provide flexibility and efficiency during the

continuation process.

From a practical point of view, the user has to define the problem to solve as a

1.2. PREREQUISITE 9

Matlab object, which contain the functions 2 allowing the calculation of the vector

R of the system of equations. Thanks to the flexibility offered by the Matlab en-

vironment, users become rapidly familiar with Manlab. Calls to external routines

(e.g. finite elements code) are possible.

1.2 PREREQUISITE

1.2.1 Theoretical background

Manlab can be used as a black box and requires no particular theoretical back-

ground. However, it may be helpfull to known the principle of continuation based

on predictor-corrector technique. They are well decribed in classical textbook [2],[5],[6].

1.2.2 Matlab prerequisite

Manlab is intended for version number of Matlab larger than (or equal to) 7. The

used is supposed to be familiar with basic operations on vectors and structures in

Matlab. Experience in object-oriented programming is not required.

1.3 HOW TO GIVE THE R VECTOR IN MANLB

In Manlab, the branches of solutions are sought as power series expansion of a

path parameter a :

U(a) =

Norder∑

i=0

aiU i (1.2)

and the order of truncature Norder is generally high, between 15 and 30. For an

easy and efficent computation of the power series, the vector of equation R has to

2so-called "methods" in object-oriented programming.

10 CHAPTER 1. HOW TO USE MANLAB

be polynomial and quadratic. More precisely, Manlab deals with systems of the

form :

R(U) = L0 + L(U) + Q(U, U) = 0 (1.3)

where L0 is a constant vector, L a linear operator with respect to U , and Q a bi-

linear operator with respect to U . This quadratic framework could appear as very

restrictive at first. However, as we shall see along this manual, a very large class

of algebraic systems can be put under that framwork provide that some transfor-

mations are performed and additional variables are added.

Let’s take an example. We want to solve the following system

r1(u1, u2, λ) = 2u1 − u2 + 100 u1

1+u1+u2

1

− λ = 0

r2(u1, u2, λ) = 2u2 − u1 + 100 u2

1+u2+u2

2

− (λ + µ) = 0.
(1.4)

Introducing the following additional variables v1 = u1 + u2
1, v2 = u2 + u2

2, v3 = 1
1+v1

and v4 = 1
1+v2

, the system is now equivalentely rewritten as,

0 +2u1 − u2 − λ +100u1v3 = 0

−µ +2u2 − u1 − λ +100u2v4 = 0

0 +v1 − u1 −u2
1 = 0

0 +v2 − u2 −u2
2 = 0

−1 +v3 +v1v3 = 0

−1
︸︷︷︸

L0

+v4
︸ ︷︷ ︸

L(U)

+ v2v4
︸ ︷︷ ︸

Q(U,U)

= 0

(1.5)

with U = [u1, u2, v1, v2, v3, v4, λ].

To put a given system under the required formalism 1.3 is genrally the most

difficult and unusual task for the beginner with Manlab.

1.4 INSTALLATION

• Uncompress the archive manlab_(version).tar.gz in a directory. In the

archive are gathered Matlab files required by Manlab together with various

1.5. QUICK START 11

examples detailed hereafter. The tree structure of manlab_(version).tar.gz

is detailed below:

MANLAB/SRC/← Source files mandatory for the functionning of Manlab

MANLAB/DOC/← contain the documentation.

MANLAB/BASIC-EXAMPLES/← Various examples ready to work with.

• Add the path of directories MANLAB/SRC/ to the pathvariable of Matlab.

Example : if the archive has been unpacked in the directory

/home/myself/applications/, you only have to type in the Matlab con-

sole the following commands:

> addpath(’/home/myself/applications/MANLAB/SRC’);

Manlab is now installed on your computer.

1.5 Quick start

1.5.1 How to launch examples ?

Matlabă scripts allowing to run the examples can be found in the directory BASIC-EXAMPLES

of the archive. Make this directory be the working directory of Matlab, and type

parabole.m in the command line of Matlab to launched the parabole example. The

graphical interface of Manlab is made visible and the continuation can be started

using the button “+>”.

1.5.2 Simple detailed example

To have a quick, but yet deep understanding of Manlab, the user is invited to

read and execute the source codes of the example below. They demonstrate the

12 CHAPTER 1. HOW TO USE MANLAB

continuation of a parabola. The unknow vector is U = [x, y]t and the vector of

equation

R(U) = y − (x− a)2 = 0 (1.6)

R(U) has to be rewritten as a ’LQ’ problem;

R(U) = L0 + L(U) + Q(U, U) = 0 (1.7)

L0, L, Q contain the constant, linear and quadratic terms respectively:

L0 = −a2, L(U) = y + 2ax, Q(U1, U2) = −x1x2 (1.8)

with U1 = [x1, y1]
t and U2 = [x2, y2]

t.

The files needed to run this example can be found in the directory BASIC-EXAMPLES/@PARABOLE

L0.m, L.m, Q.m and PARABOLE.m. The first three files contain the definition of

the functions L0, L et Q used to calculate the vector of equations R, and the

file PARABOLE.m is the constructor (in the sense of object-oriented programing).

Finally the instructions which allow to launch the graphical interface with the

user defined parameters are written in the script file parabole.m located in the

BASIC-EXAMPLES directory (same level as @PARABOLE).

1.5.3 Construction of the PARABOLE object

The file below allows to create an object containing data linked to the problem. In

the present case of a parabola defined in Eq. 1.6, the unique data is the constant

parameter a.

———————–File PARABOLE.m :

function objparabole = PARABOLE(a)

% creation of a structure containing the constant a

1.5. QUICK START 13

structparabole.a = a;

% creation of a manlab objet which defines a system with two unknowns

% and one equation (the number of unknowns should be passed as an argument

objsys = SYS(2);

% creation of the PARABOLE oject containing the data

% of the structure structparabole and heriting from the the object objsys

objparabole = class(structparabole,’PARABOLE’,objsys);

———————–End of the file PARABOLE.m

The command objsys = SYS(2); creates an object which is a nonlinear sys-

tem forManlab. The command objparabole = class(structparabole,’PARABOLE’,objsys

allows to link the object objsys with the structure structparabole and returns

the resulting object objparabole whose type is PARABOLE.

While these command lines may appear unclear to the reader unfamiliar with

object-oriented proagramming, it should be noticed that these few lines allow-

ing the object creation is always the same ! Only the name of the object (here

PARABOLE) should be changed. This can be checked in the examples presented

at the end of this userguide. Therefore, no need to understand subtleties of the

object-oriented programming, working by analogy should work.

1.5.4 Functions L0, L, et Q

———————–File L0.m :

function L0 = L0(objparabole)

% L0 = -a^2

L0 = -objparabole.a * objparabole.a;

14 CHAPTER 1. HOW TO USE MANLAB

———————–File L.m :

function L = L(objparabole,U)

% L = y + 2 a x

L = U(2) + 2 * objparabole.a * U(1);

———————–File Q.m :

function Q = Q(objparabole,U1,U2)

% Q = - x1 * x2

Q = - U1(1) * U2(1);

1.5.5 Launching script

The following script, located in the BASIC-EXAMPLE directory, allows to launch the

continuation of a branch of parabola:

> manlabinit; % initialisation of Manlab

> a = 1; % definition of the constant a

> ML_problem = PARABOLE(a); % creation of a PARABOLE object

> ML_Ustart = [a; 0;]; % definition of a vector containing an approximate

> ML_dispvars = [1, 2]; % definition of a vector containing the index

> manlabstart; % launching of manlab

Once this script has been launched, the graphical interface of Manlab is made

visible and the continuation can be started using the button “+>”.

1.6. A CLOSER LOOK 15

1.6 A CLOSER LOOK

A more detailed and precise description of what has been presented above is given

hereafter.

1.6.1 Classes and object-oriented programming within Mat-

lab

In the following, some concepts allowing the writting of Matlab classes are re-

viewed. For more details, the reader should refer to the Matlab documentation.

From a pragmatical point of view, a Matlab class is defined by a set of source

files in the same directory. The name of that directory must begin with the charac-

ter @, while the rest of the name is considered to be the name of the class.

Example : If you want to create a class named CIRCLE, a directory @CIRCLE

should first be created and the files defining the class stored inside this directory. .

In each of these files is written a function which manipulates the data embedded

into the class. Among the files, one should be the constructor of the object. The

constructor must have the same name as the class, for example : CIRCLE.

A call to the constructor fuction usually return an object of the corresponding

class type. The remaining functions in the directory are used to manipulate this

object by manipulating the structure of data embedded in the object.

Here is an example of a Matlab class which defines the concept of a circle :

———————–File CIRCLE.m (constructor)

function objcircle = CIRCLE(centrex, centrey, radius)

% definition of the structure of data of a circle

structcircle.cx = centrex;

16 CHAPTER 1. HOW TO USE MANLAB

structcircle.cy = centrey;

structcircle.r = radius;

% declaration of the class CIRCLE embedding as a member

% the structure structcircle

objcircle = class(structcircle,’CIRCLE’);

———————– End of File

Once the file has been placed into the directory @CIRCLE, the command

> mycircle = CIRCLE(-1, 3, 6);

allows to create a circle object the centre of which is the point (−1, 3) and the radius

is 6. Both information are stored in the variable mycircle. Of course, without any

additional function, this object is useless. Here is a function to plot the circle in a

Matlab figure:

———————–File Draw.m (method)

function [] = Draw(objcircle, npoints)

cx = objcircle.cx;

cy = objcircle.cy;

r = objcircle.r;

xs = cx + r * cos((0:npoints-1)/nbpoints * 2 * pi);

ys = cy + r * sin((0:npoints-1)/nbpoints * 2 * pi);

plot(xs,ys);

———————– End of File

1.6. A CLOSER LOOK 17

Once this function has been placed inside the directory @CIRCLE, the following

commands

> mycercle = CIRCLE(-1, 3, 6);

> Draw(mycircle, 20);

plot the circle in a figure using 20 points for the drawing. It is worth noting that

the first argument of the functions applying to the class (so-called methods) should

be an object which type is CIRCLE. If it is not the case, the function cannot work

within Matlab as a method, and an error will occur.

It is possible to write as many methods as needed to work on data embedded

within the class. Here is another illustration of a method which allow to translate

the circle:

———————–File Translate.m (method)

function objcircle = Translate(objcircle, tx, ty)

objcircle.cx = objcircle.cx + tx;

objcircle.cy = objcircle.cy + ty;

———————– End of File

Once this file has been placed in the directory @CIRCLE, the following com-

mands allow to plot the original and the translated circles on the same figure:

% construction of the circle

> mycircle = CIRCLE(-1, 3, 6);

% Translation of the circle and copy in variable mycircletranslated

> mycircletranslated = Translat(mycircle, 2, 2);

% Plot the original circle in a figure

> Draw(mycircle, 20);

18 CHAPTER 1. HOW TO USE MANLAB

% Do not erase the plot before next plot

> hold on;

% Plot the translated circle

> Afficher(mycircletranslated, 20);

1.6.2 Definition of the user system (type ’LQ’)

To work with Manlab, the system of equations to solve has to be implemented has

a Matlab class. This class will obviously contain its constructor (the method used

to create the class) as well as the methods allowing the calculation of the residue

of the system of equations (L0, L and Q).

Moreover, in order to "link" your particular class to the Manlab solver, your

class should derive (only one command line) from an existing class of type "Manlab

system". See figure (1.2) for an illustration.

Your class should contain at least four functions : The first one allows the cre-

ation of the object. A structure of data related to the problem will possibly be

defined (constant values, vectors, matrix, ...)

function obj = YOURSYS(yourparameters)

The three remaining functions L0, L, et Q should respect the following rules

concerning the syntax and type of arguments:

function [L0] = L0(instance_yourobj)

function [L] = L(instance_yourobj, column_vector_U)

function [Q] = Q(instance_yourobj, column_vector_U1, column_vector_U2)

Each of these functions should be embeded in a separate file 3. This is exampli-

3It is not possible to define more than one function in the same file, excepted for locally called

functions (see Matlabdocumention)

1.6. A CLOSER LOOK 19

Q = Q(yourobject,U1,U2)

@SYS : MANLAB class for nonlinear systems

is derivated from

@YOURSYS : Class defining your system

Must contain the following methods:

yourobject = yourSYS(yourparameters)
L0 = L0(yourobject)
L = L(yourobject,U)

Figure 1.2: Your class must contain the method required for its creation (the con-

structor) as well as the methods involved in the calculation of the residue. Moreover,

your class should be derivated from a more general class (type @SYS) given by

Manlab

fied in figure (1.3).

1.6.3 Launching

To launch Manlab is made through a script named manlabstart in the Matlab

shell.

Variables ML_objsys, ML_Ustart and ML_dispvars must be predefined before

the script is launched.

• Variable ML_problem must be be an object deriving from the class SYS and

must embed functions L0, L, Q and a creator function (e.g. YOURSYS).

• Variable ML_Ustart is an approximate solution vector. Note that ML_Ustart

must be a column vector (length ninc).

20 CHAPTER 1. HOW TO USE MANLAB

Files in directory @YOURSYS :

YOURSYS.m

L.m

Q.m

L0.m
function [votreobj]=YOURSYS(parameters)

L.m

function [L] = L(yourobj, U)

L0.m

function [L0] = L0(yourobj)

Q.m

%definition of the structure of data

function [Q] = Q(yourobj, U1, U2)

%Allocation and calculation of L0

[...]

[...]

%creation of your object (derivation)
yourobj =class(yourobj,’YOURSYS’,sys);

%Allocation and calculation of L

%Allocation and calculation of Q

%Fields of yourobj are available

yourobj.yourmatrix = [2,3;1,6];
[etc...]

yourobj.yourparameter = 2.2326;

%(yourparameter and yourmatrix)
[...]

sys = SYS(11); % (example)

%definition of problem SYS (11 unknowns)

YOURSYS.m

Figure 1.3: Minimal example of the files organization defining a class named

YOURSYS. There are four required functions which allow to define a ’LQ’-type

quadratic problem. In the creator function YOURSYS, an object @SYS is created, as

well as an object @YOURSYS, deriving from the class @SYS. Note that data embed-

ded in your class (here yourmatrix and yourparameter) are available in all the

functions located in directory @YOURSYS through the variable named yourobj.

1.6. A CLOSER LOOK 21

• Variable ML_dispvars is a matrix whose two columns are the index of the

variables to plot in the bifurcation diagram. As an illustration:













x1, y1

x2, y2

x3, y3

...

xn, yn














(1.9)

Please, note that the maximum number of simultaneous plots n is equal to 8.

Example : If dispvars=[1,2;1,4] then two curves will be simultaneously

plotted on the same diagram: U(2) as a function of U(1), and U(4) as a

function of U(1). The number of curves to plot is determined automatically

as being the number of lines in dispvars.

Example : Launching of Manlab with an object whose type is YOURSYS, an

approximate vector and a vector to precise whch variables to plot:

> manlabinit; % Initialisation of Manlab

> ML_problem = YOURSYS(yourparameters); % creation of an object whose

type is YOURSYS

> ML_Ustart = [0; 2; 0.3; -2]; % definition of an approximate solution

vector

> ML_dispvars = [1, 2]; % definition of a vector containing the

index of the variables to plot

> manlabstart; % call to the manlabstart script

When the manlabstart is launched, Manlab tries to make a correction from

the approximate solution Ustart to come back right onto the solution. Once the

correction step is over, the Manlab interface appears and you can start the con-

tinuation of solution branches of your problem. The starting point is indicate by

a square box on the bifurcation diagram. A tangent vector at the starting point is

also made visible on the diagram. Clicking the + buttom make the continuation

22 CHAPTER 1. HOW TO USE MANLAB

toward the direction indicate by the tangent vector. Clicking the - buttom make

the continuation in the reverse direction.

1.6.4 The class SYS

The class defined by the user must be derivated from the class SYS. Therefore, it

can be seen as an interface between the user class and the rest of Manlab imple-

mentation.

In particular, the method for the creation of SYS is embedded:

> objsys = SYS(ninc);

witth ninc the number of unknowns of the user problem. The number of equations

is automatically set to ninc-1.

The class SYS returns an instance of an object (objsys) which allow to alter

some Manlab parameters. These parameters can be modified through the follow-

ing functions:

• objsys = set_ordre(objsys, order). Allows to modify the order of the

series expansion in the ANM process. The default value is 20.

• objsys = set_itemax(objsys, itemax). Allows to modify the number

of maximum iterations in Newton-Raphson correction. The default value is

15.

• objsys = set_chemin(objsys, A). Allows to modify the path vector for

the ANM. A should be a column vector with length ninc. By default, each

component of A is set to 1.

• objsys = set_nbptstroncon(objsys, order). Allows to modify the num-

ber of points in a section of a branch (used for the plot and the export of the

section). The default value is 8.

An example of how to use these functions is given in section 3.2.3 page 43.

1.7. DETAILS OF THE GRAPHICAL INTERFACE 23

1.7 DETAILS OF THE GRAPHICAL INTERFACE

Figure 1.4: Graphical interface of Manlab

1.7.1 "Man" frame

+> (branch .) : Pressing this button launches the calculation of Nb tron sections

from the current point. The direction of continuation is given by the tangent vector

indicate on the bifurcation diagram.

<- (branch .) : Pressing this button launches the calculation of Nb tron sections

from the current point. The direction of continuation is opposite to the tangent

vector indicate on the bifurcation diagram.

Number ’5’ : Number of sections per branch. ’5’ is the default value

24 CHAPTER 1. HOW TO USE MANLAB

Threshold : Threshold relative to the residue in the ANM calculation

Erase branch : Erase the latest branch calculated

1.7.2 Frame "Correction"

Threshold : Threshold relative to the correction.

Active at the beginning of a portion : If activated, and if the starting point

does not satisfy the tolerance criterion, a correction is applied until the norm of the

residual vector become smaller than the threshold

1.7.3 Frame "Perturbation"

P=+c : Add a “positive” perturbation to the original equations. The "intensity" of

the perturbation can be controlled through its norm c. Note that a correction step

is automatically launched when this button is pressed.

P=0 : No perturbation. However, a correction step is automatically launched when

this button is pressed.

P=-c : Add a “negative” perturbation to the original equations. The "intensity" of

the perturbation can be controlled through its norm c. Note that a correction step

is automatically launched when this button is pressed.

c : Norm of the perturbation. Note that a correction step is automatically launched

when the value of c is changed.

1.7. DETAILS OF THE GRAPHICAL INTERFACE 25

1.7.4 Frame "Visualisation"

point : Launches the visualisation procedure disp (local plot) relative to a point

in the diagram that you have to select with the mouse. The current active point is

not modified.

portion : Launches the visualisation procedure disp_global (global plot) rela-

tive to a section in the diagram that you have to select with the mouse.

branch : Launches the visualisation procedure disp_global (global plot) rela-

tive to a branch in the diagram that you have to select with the mouse.

diag. : Launches the visualisation procedure disp_global (global plot) for the

complete diagram.

1.7.5 Frame "Export"

point : Export into the Matlab variable ML_Uj all the components of the vector

U corresponding to the current active point.

portion : Export into theMatlab variable ML_Up all the components of the vector

U for all points of a section, which should be selected with the mouse. The terms of

the serie expansion of the selected branch are also exported in theMatlab variable

ML_Ups.

branch : Export into the Matlab variable ML_Ub all the components of the vector

U for all the points of a branch, which should be selected with the mouse.

diag. : Export all the components of vector U into the Matlab variable ML_Ud for

all points of the diagram.

26 CHAPTER 1. HOW TO USE MANLAB

1.7.6 Frame "Erase"

portion, branch, diag. : Erase the element which has been selected with the

mouse.

1.7.7 Frame "Point"

Place Uj : Allows to select as a current active point, a point among branches al-

ready calculated. In practice, simply click with the mouse wherever wished on the

diagram.

Import ML_Uj : The point specified in the global variable ML_Uj is chosed as the

new current active point, and a correction is applied. This allows to place the cur-

rent active point of Manlab through the Matlab shell. This function may be used

if many approximate solutions are known, but are not connected by branches.

1.7.8 Frame "Diagram"

Freezeview : Freeze/unfreeze the zoom scale of the diagram plot.

Load/Save : Allows to load a diagram previously saved. Note that a modification

of the number of unknowns of a problem might cause an incompatibility with old

diagrams.

1.7.9 Jump

This button allows to change the current active point through a jump procedure.

This procedure can be seen as a first order predictor. Practically, to perform the

1.8. USER-DEFINED PLOTS 27

jump, the mouse should be placed and left-clicked on the arrival area desired in

the diagram. The jump direction is given the tangent to the branch at the current

active point. The length of the jump is given by the current active point, the desired

arrival area, and the tangent to the branch. Once the jump has been made, a

correction step is automatically launched. If this correction step fails, the jump

procedure is cancelled.

1.8 USER-DEFINED PLOTS

The continuation graph in Manlab only embed the plots of variables whose in-

dex are specified in variable dispvars. To extend the plotting possibilities , two

methods are available in Manlab:

1.8.1 Local user-defined plot

The local user-defined plot allows to plot whatever variable at a given point of the

continuation graph. To achieve this, a function disp should be created and placed

in the directory of the class corresponding to the problem studied:

function [] = disp(instance_yourobj, U);

instance_yourobj is an instance of your object and U is a column vector con-

taining all the variables of the problem. This function is called each time a contin-

uation point is calculated and each time the button "plot point" is pressed.

Example : of a disp function :

function [] = disp(obj, U)

28 CHAPTER 1. HOW TO USE MANLAB

bar(U); % bar plot of the values of all components of vector U

In the body of function disp, whateverMatlab command can be used (including

various kinds of plots).

Automatic mode : when the global variable ML_pointdisplay is set to 1, the

disp function is called after each new calculation of a portion.

This can be simply achieved in the Matlab console:

> ML_pointdisplay = 1

1.8.2 Global user-defined plot

The global user-defined plot relies on the same principle as the local one, excepted

that it allows to reach all the points inside the portion of a branch. A function

disp_global should be created and placed in the directory of the class corre-

sponding to the problem studied:

function [] = disp_global(instance_yourobj, Us);

instance_yourobj is an instance of your object and Us is a matrix whose col-

umn vectors contain all the variables of the problem. The number of columns de-

pends on the number of points per portion nbptstroncon, which can be modified

(see section 1.6.4).

Automatic mode : when the global variable ML_globaldisplay is set to 1, the

disp_global function is called after each new calculation of a portion.

This can be simply achieved in the Matlab console:

> ML_globaldisplay = 1

Chapter 2

Theoretical elements

2.1 CONTINUATION

ANM is a continuation method to solve quadratic algebraïc nonlinear systems of

smooth equations:

R(U) = 0 with R ∈ R
n and U ∈ R

n+1 is the vector of unknowns (2.1)

One specificity of the ANM is to give access to solution branches, and not only

to solution points. To achieve this result, the vector of unknowns is written as a

power serie expansion (truncated at order m) of a variable a (the so-called path

parameter):

U(a) = Σm
i=0Uia

i, where Ui ∈ R
n, a ∈ R

+, (2.2)

To change the truncation order m, see section 1.6.4 page 22.

More precisely, we only consider quadratic systems R:

R , L0 + L(U) + Q(U,U) with L0,L,Q ∈ R
n (2.3)

where L0 is a constant vector, L is a linear application, andQ is a bilinear form. The

ansazt (2.2) is used in equation (2.3), leading to a polynomial expression. Equation

29

30 CHAPTER 2. THEORETICAL ELEMENTS

(2.1) is then reduced to term-to-term equalization of each power of a, which leads

to a set of m+1 linear systems (since only the first m+1 powers of a are considered,

from 0 to m).

Let U0 be a solution vector :

• order 0 : L0 + L(U0) + Q(U0,U0) = 0, which is a trivial system since U0 is

solution of (2.3).

• order 1 : L(U1) + Q(U0,U1) + Q(U1,U0) = 0, this system can be rewritten

JU0
U1 = 0 where JU0

∈ R
n×n+1 is the jacobian matrix of R evaluated at U0.

• order p>1 : JU0
Up + Σp−1

i=1 Q(Ui,Up−i) = 0

The original nonlinear problem has then been reduced to a set of linear systems.

However, the path-parameter a has still to be defined. Following Cochelin et al.

([3]), the classical definition of the pseudo arclength a ,< U,U1 > is generalized

to:

a , Ut
1AU, (2.4)

where A is a diagonal matrix, which allows to consider only some components of U

for the definition of a. Once again, the use of the serie expansion (2.2) in (2.4), and

the term-to-term equalization for each power of a leads to;

• order 1 : Ut
1AU1 = 1

• order p>1 : Ut
1AUp = 0

To change the values of A, see section 1.6.4 page 22.

Remarks:

• Once each Up has been found, the validity domain of the serie expansion is

estimated through the calculation of an approximation of the convergence

2.1. CONTINUATION 31

radius amax of the serie, i.e. the interval [0 amax] for which ||R(U(a))|| ≤ ǫr.

The user-defined threshold ǫr is set through the graphical interface.

• The power serie expansion, and the convergence radius amax define a portion

of the branch. La décomposition en série, et son rayon de convergence. A new

portion, continuating the branch, can be determined if the final point of the

latest calculated portion is chosen as the starting point of the new portion

(possibly after a correction step). A solution branch is therefore found by

the ANM as a succession of portions, the length of which is automatically

determined (through the estimation of the convergence radius of each power

serie).

• Correction step: For reasons that wil be given later on, it may be useful to

launch a correction step. It brings the starting point right back on the solu-

tion. For example, this allows to avoid cumulative errors when calculating a

branch with many portions.

For correction, a Newton-Raphson method is implemented in Manlab be-

cause of its quadratic convergence rate (since the correction is performed from

solutions which are genrally close to the exact branch).

Starting from an approximate solution Uap, the correction ∆Ucor is seeked

such that R(Uap + ∆Ucor) = 0. This correction is obtained according to the

Newton-Raphson algorithm through an iterative process:

∆Ui+1 = −J−1
Uap+∆Ui

R(Uap + ∆Ui) (2.5)

∆Ucor = ∆Ui+1 when ∆Ui+1 −∆Ui ≤ ǫc where ǫc is a user-defined threshold.(2.6)

Since ∆Ucor ∈ R
n+1 and (2.5) is a system of n equations, an additional equa-

tion is required. We chose to impose in Manlab:

Ut
t∆Ui = 0 ∀i where Ut is defined by JUap

Ut = 0 (2.7)

32 CHAPTER 2. THEORETICAL ELEMENTS

This corresponds to impose that the direction followed by the correction algo-

rithm to get closer to the branch is perpendicular to the branch.

Avantages of the ANM:

• The solution branch is known analatytically for each portion.

• Robustness of the method compared to other methods of continuation.

• Low computational cost.

• The quadratic nature of the equations makes the exact calculation of the tan-

gent matrix an easy task. 1.

2.2 BRANCHSWITCHINGTHROUGHPERTURBA-

TION

A classical strategy for the switch of branch at a bifurcation consists in slightly

modifying the original equations by the addition of a low-norm perturbation vec-

tor. This transform the exact bifurcations into a perturbed bifurcations (see figure

2.1). The choise of the amplitude of the perturbation can be difficul with classical

predictor-corretor schemes. The amplitude should be small enough to stay closed

to the solution of the unpertutbed system, but not too small to avoid a systematic

jump over the bifurcation. Du to its adaptative stepsize the ANM procedure is

robust and succesfull almost whatver th amplitude of the perturbation.

In Manlab, the perturbation vector is a random vector, the norm and the sign

of which are controlled through the graphical interface. This vector is used by the

1It is calculted by Manlab using L and Q.

2.2. BRANCH SWITCHING THROUGH PERTURBATION 33

Quasi−bifurcation

Perturbation

UbUb

Exact bifurcation

Figure 2.1: Transformation of an exact bifurcation into a perturbed bifurcation

through the addition of a small perturbation.

@SYS class in a transparent way, and is inserted in the original problem as shown

below:

Rp(U) = R(U) + cP

= L0 + L(U) + Q(U, U) + cP
(2.8)

where Rp(U) is the perturbated problem, P a normalized vector of constant random

numbers, and c the intensity of the perturbation. If R(U) has an exact bifurcation

at a point Ub, it corresponds graphically to a crossing of two solution branches. The

addition of a perturbation transforms the crossing into two a non crossing where

the two branches remain separate2 in the neighborhood of Ub[5]. The distance

between branches of the original and the perturbated problem depends on the in-

tensity of the perturbation c. Moreover, changing the sign of c allows to have a

symmetrical quasi-bifurcation. It is then possible to use the two perturbated plots

to turn "left" or "right" at a (quasi-)bifurcation point, as shown in figure 2.2.

Finally, in order to go from the original to the perturbated problem and vice

versa, a correction step is mandatory. This correction step is automatically launched

by Manlab when needed. It uses a Newton-Raphson algorithm. The combination

of different (positive and negative) values of the intensity of the perturbation and

2The method of the additional random vector, though not infallible (the crossing might remain),

proves to work very well with a probability of failure close to zero.

34 CHAPTER 2. THEORETICAL ELEMENTS

Quasi bifurcation + Quasi bifurcation −

c > 0 c < 0

Figure 2.2: Influence of the sign of c on the quasi-bifurcation.

P=0

P=+c

P=+c

P=0

P=0

P=0

P=0

P=−c

P=−c

P=0

Figure 2.3: Branch switching through a perturbation method

2.2. BRANCH SWITCHING THROUGH PERTURBATION 35

several correction steps, Manlab allows the user to plot the different branches

starting from a bifurcation point, as explained in figure 2.3.

36 CHAPTER 2. THEORETICAL ELEMENTS

Chapter 3

Examples

3.1 SIMPLE EXAMPLE

3.1.1 Problem statement

Lets consider the following quadratic problem with a single equation and two un-

knowns:

R(U) = R([x, y]T) = a + bx + cy + dxy + ex2 + fy2 (3.1)

This problem can be recasted as

R(U) = L0 + L(U) + Q(U, U) (3.2)

with 





L0 = a

L(U) = bx + cy

Q(U1, U2) = dx1y2 + ex1x2 + fy1y2

(3.3)

3.1.2 Definition of the user problem

Here are 4 files allowing to perform the continuation of the solutions with Manlab

37

38 CHAPTER 3. EXAMPLES

!! !"#$!"#% !"#& !"#' " "#' "#&
!"#'

"

"#'

"#&

"#%

"#$

!

!#'
()*+,*--.

/!0'1
/!0'1

2,*345.67.,89,:..6!6

2,*345.67.,89,:;.6<6

2,*345.6.=*48.6

Diagram

Perturbated branch -

Perturbated branch +

"Exact" branch +

Figure 3.1: Diagram of the QUADMINI problem when a = 0, b = 2, c = −2.3, d = 1,

e = 2, and f = 3.2. The diagram shows the "exact" branch (a circle), as well as

two perturbated branches (noted + and −) when the intensity of the perturbation is

c = 1e− 1.

3.1. SIMPLE EXAMPLE 39

———————–File QUADMINI.m :

function obj = QUADMINI(a,b,c,d,e,f)

% Creation of the basic object SYS

% with 1 equation, 2 unknowns, ’LQ’ type.

sys = SYS(2);

% Creation of the structure of data visible by the methods

% embedded in the class

obj.a = a;

obj.b = b;

obj.c = c;

obj.d = d;

obj.e = e;

obj.f = f;

% Creation of class ’QUADMINI’ with the structure of data obj,

% and deriving from class SYS

obj = class(obj, ’QUADMINI’, sys);

———————–File L0.m :

function L0 = L0(obj)

L0 = obj.a;

———————–File L.m :

function L = L(obj,U)

L = obj.b * U(1) + obj.c * U(2);

———————–File Q.m :

function Q = Q(obj,U1,U2)

Q = obj.d * U1(1) * U2(2) + obj.e * U1(1) * U2(1) + obj.f * U1(2) * U2(2);

40 CHAPTER 3. EXAMPLES

3.1.3 Launching the continuation

> manlabinit;

> ML_problem = QUADMINI(0,2,-2.3,1,2,3.2);

> ML_Ustart = [0;0];

> ML_dispvars = [1,2];

> manlabstart;

3.2 EXAMPLE WITH BIFURCATION POINTS

3.2.1 Problem statement

Lets consider the following problem with a single equation and two unknowns:

R(U) = R([x, y]T) = (x− y2)(y − (x− 2)2) + a (3.4)

where a is a constant parameter. Thanks to the new variable v = x − y2 and

w = y − (x− 2)2, R(U) can be rewritten as:

R(U) = R([x, y, v, w]T) =







vw + a = 0

x− v − y2 = 0

4− 4x + w − y + x2 = 0

(3.5)

which can be recasted quadratically

R(U) = L0 + L(U) + Q(U, U) (3.6)

with

L0 =







a

0

4

, L(U) =







0

x− v

−4x + w − y

, Q(U1, U2) =







v1w2

−y1y2

x1x2

(3.7)

3.2. EXAMPLE WITH BIFURCATION POINTS 41

0 1 2 3 4 5 6 7 8 9
−4

−2

0

2

4

6

8
(1,2)
(1,2)

Figure 3.2: Continuation diagram of the QUADBIF problem, composed of two

parabolas intersecting at two bifurcation points.

1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

(1,2)
(1,2)

Branche perturbéePerturbated branch

Figure 3.3: Zoom on the continuation diagram of the QUADBIF problem around

one bifurcation point. The use of a perturbated branch allowed the switch between

one parabola and the other.

42 CHAPTER 3. EXAMPLES

3.2.2 Definition of the user problem

Here are 4 files allowing to perform the continuation of the solutions with Manlab

———————–File QUADBIF.m :

function obj = QUADBIF(a)

% Creation of the basic object SYS

% with 3 equations, 4 unknowns, ’LQ’ type.

sys = SYS(4);

% Creation of the structure of data visible by the methods

% embedded in the class

obj.a = a;

% Creation of class ’QUADBIF’ with the structure of data obj,

% and deriving from class SYS

obj = class(obj, ’QUADBIF’, sys);

% U = [x, y , v, w]

———————–File L0.m :

function L0 = L0(obj)

L0 = zeros(3,1);

L0(1) = obj.a;

L0(2) = 0;

L0(3) = 4;

———————–File L.m :

function L = L(obj,U)

L = zeros(3,1);

3.2. EXAMPLE WITH BIFURCATION POINTS 43

L(1) = 0;

L(2) = U(1)-U(3);

L(3) = -4*U(1) + U(4) - U(2) ;

———————–File Q.m :

function Q = Q(obj,U1,U2)

Q = zeros(3,1);

Q(1) = U1(3) * U2(4);

Q(2) = -U1(2) * U2(2);

Q(3) = U1(1) * U2(1);

3.2.3 Launching the continuation

> manlabinit;

> ML_problem = QUADBIF(0);

% changing the order of the serie expansion (ANM):

> ML_problem = set_ordre(ML_problem, 25);

> ML_Ustart = [2;sqrt(2);0;0];

> ML_dispvars = [1,2];

> manlabstart;

44 CHAPTER 3. EXAMPLES

Bibliography

[1] E. Doedel, H. Keller, J. Kernevez. Numerical analysis and control of bifurcation

problems (I) Bifurcation in finite dimension. International journal of bifurca-

tion and chaos, 1:493–520, 1991.

[2] R. Seydel. Practical Bifurcation and Stability Analysis, from equilibrium to

chaos. Springer-Verlag, second edition, 1994.

[3] B. Cochelin, N. Damil, and M. Potier-Ferry. Asymptotic numerical methods and

pade approximants for non-linear elastic structures. International journal for

numerical methods in engineering, 37:1187–1213, 1994.

[4] B. Cochelin, N. Damil, and M. Potier-Ferry. Méthode asymptotique numerique.

Hermes Lavoissier, 2007.

[5] K Georg and E. L. Allgower. Numerical continuation method, an introduction,

volume 13 of Springer Series in Comptutational Mathematics. Springer-Verlag,

1990.

[6] E.J. DOEDEL, 2007. In Numerical Continuation methods for dynamical sys-

tems, B. Krauskopf H.M. Osinga J. Galan-Vioque Eds, Springer Verlag, p1-49.

Lecture notes on numerical analysis of nonlinear equations.

[7] M. Potier-Ferry, N. Damil, B. Braikat, J. Descamp, J. M. Cadou, H-L. Cao,

and A. El Hage-Hussein. Traitement des fortes non linéarités par la méth-

45

46 BIBLIOGRAPHY

ode asymptotique numérique. Comptes Rendus de l’Académie des Sciences de

Paris, t324 Serie II b:171–177, 1997.

