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Overview

Aim of the talk :

Describe the so-called Asymptotic Numerical Method,

a continuation method
using high order Taylor series expansions.
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Overview

Continuation

Goal : determine solution branches of

R(u,\) =0

withu € R"and A € R
and R : R"*! — R" is a smooth function.
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Overview

Continuation
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Overview

Continuation
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Overview

The cornerstone

To compute the Taylor series of the solution-branch :
@ Insert the Taylor series

u@=uy+au +au +---+a' uy
@ Into the algebraic equation

tan(u)
1+u

R(u,)) := u+ 2 + -A=0

@ And collect terms with the same powers !
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Live demonstration.
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Overview

Logistic Map

Compute the iterates of the logistic

map 09
0.8 4
f(x) = pux(1 — x) o |
The system solved is 0 06 1
©05 J
2
x1 = f(xo) Goar ]
x2 = f(x1) € 0s |
: 02 .
XN—1 = f(Xn—2) 0.1f J
XN = f(XN_1) 0 L I | | I I
0 0.5 1 1.5 2 25 3 35 4

with xo = 0.5 and N = 5000.
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Overview

Pendulum

Compute the orbit of the pendulum

{5 %0

with 6(0) = 5 and ¢(0) = 0. The
system is solved with a A\-scheme :

{ Ont1 = 0n+ honyx
Sny1 = ¢n — hsin(Onsy)

with Xpn = (1=A)Xn+AXy.1, and

— 2
h= 5-
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Pendulum

Compute the orbit of the pendulum

{Z 22 i)

with 0(0) = % and ¢(0) = 0. The
system is solved with a A\-scheme :

{ Ont1 = 0n+ hénia
Sn1 = ¢n — hsin(Opiy)

with Xp4n = (1 =X)Xn+AXp.4, and
h= 2

Overview
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Overview

Deformation of a complex structure

Bifurcation diagram First deformed mode
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0z 4+ 5 s w1 1 1 % 1 = 2 0 1 2w 4w % w 0 w0 %

vertial displacement of the middle node X
Second deformed mode ,
Third deformed mode
35 N

A
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Overview

Overview of Manlab-4

Equations (E) If X(t) is periodic, quasi-periodic, or Unknowns (X)
Jl discretized on time samples ﬂ
Quadratic recast of (Eg) is projected -
=] . b . k=s| Type of the unknowns:
the equations ( on a suitable basis of representation: [AI ic. Function of the ti
by Harmonic Balance Method (HBM), gebraic, Function © iime

collocation, etc

A quadratic algebraic system
(Eq,a1) is obtained.

l

[ The continuation of this quadratic algebraic system (Eq aig) is performed

using the Asymptotic Numerical Method.
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The Asymptotic Numerical Method

Continuation

Goal : determine solution branches of

where U = [u, A].

withu e R"and A € R
and R : R™t1 — R" is a smooth function.
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The Asymptotic Numerical Method

Taylor series based continuation

@ let Uy be a regular point with ||[R(Ug)|| < eg (tolerance).

@ let Uy be the tangent at Ug.

@ let a be the pseudo arc length parameter a = U1T.(U — Up).
Implicit Function theorem : The solution branch passing through Uy may be
represented as a (truncated) Taylor series with respect to the pseudo-arclength
parameter a.

U(a) = Ug + aUy + a2Up + - - - + aVUy and N = 20 or 30
Series computation : solve a succession of linear systems that share the same
stiffness matrix %Up = F'(Us,...,Up_1)
u U,

/ Exact solution

Taylor series solution

A 7
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The Asymptotic Numerical Method

The Domain of utility of the series is the interval [0, amax] for which ||R(U(a))|| < er

A good approximation : R(Ug + - - - + aVUy) ~ R(Up) + aVt'RN+1,

1
So, if one requires ||aVt'RN*|| < eg  then  amax = ( ;i )’V“

[IRN+T]|
u
ac [0, amax,]
a € [0, amax —
02
Uo,
A

The complete solution branch is obtained as a succession of local Taylor series
U(a) =Ug +aU; + 8Us +---+a"Uy  avec ac 0, amax]
@ piece-wise continuous representation

@ auto-adaptative step length — Robustness E
@ no algorithmic parameter
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The quadratic framework

The cornerstone

To compute the Taylor series of the solution-branch :
@ Insert the Taylor series

u@ =ty +au +au +---+a¥ uy
@ Into the algebraic equation

R(u, ) ::u+u2+w—)\:0
1+u

@ And collect terms with the same powers !
Two techniques :

@ use Automatic Differentiation to do the job : nice for the user but poor efficiency.
@ do a quadratic recast of the equations : then the job becomes easy and efficient
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The quadratic framework

Quadratic recast

How to recast the algebraic system R(U) = 0 in a quadratic way ?
@ Goal : find auxiliary variables U, and R; such that

R;(U;) = C + L(Us) + Q(Uy, Uy)

@ with Uy = (U, Ua),
@ C constant,

@ L linear,

@ Q quadratic.

Note that R;(U;) = [:((lﬁf))} with 582 invertible and R(Ur) = R(U).
a

X7
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The quadratic framework

The examples of the pendulum

Dimensionless parameters : m=1and g = 1.

Energy of the system : 2 a
H(9) =1 — cos(8) + g(@ — %)2 |
Equation of the motion : k I
0 +sin(0) + k(0 — ) =0 /
/
Steps : g g\ /M
@ M = 2is constant, development about § =0 : B

“ 3 o
0+0—% +k(0—2)=0
@ k = 0.1 is constant, development about # =0 :
a 3
0+60—% +01(0—5)=0 m
@ Without simplification :
0 +sin(0) + k(0 — ;) =0
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The quadratic framework

How to recast polynomials quadratically ?

LetR(U) =R(u,\) = +u+1- A\
Let v = 2.
U= (u,A\)and Uz = vthen U; = (U,Ua) = (u, A\, v).

Then Ry is defined :

uv+u+1=X
Ri(U) = Ri(w A v) = [0
And the operators are C = , L(Uy) = [u ; )‘] , Q(Us, Up) = {_ng] .
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The quadratic framework

Basic example : Simplified Pendulum

Pendulum subject to an angular spring at position 0 = 7, developed around ¢ = 0.
The equilibrium is given by :

™

5)

r(0,k) = (0 — %) + k(6 —
Definition of the auxiliary variables
) =06
Yields the quadratic recast

[ +k9—kg)}

Ri(Ur) = Ri(0, k,v) = [ W — 02

_ k= _ 6y
And the operators are C = ,L(Uf) = {9 wk 2} , Q(Us, Up) = [7962 }
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The quadratic framework

How to recast fractions quadratically ?

LetR(U) =R(u,\) =1 +u— X
Let v = 1. v can be defined implicitly through uv = 1.

Then Ry is defined :

V4 u—X\
() = Rw A = [0
u+v-—2>A 0
And the operators are C = JL(Up) = 0 QUL U = | L

Here, Ra(U;) = uv — 1 and g—ﬂz = %’?{a = u. ltis invertible if and only if u # 0.
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The quadratic framework

Simple example : Another Simplified Pendulum

Pendulum subject to an angular spring at position ¢ = f;, developed around 6 = 0.
The equilibrium is given by :

63 T
r(0,M) = (6 — E)+0'1(6_ M)

Definition of the auxiliary variables

Y= 02
Miny, = /\1_,1
Yields the quadratic recast
0% +0.1(0 — Mjn,)
Rf(Uf) = Rf(97 M7 771)7 Minv) = l,Z) - 92
MinvM
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The quadratic framework

How to recast everything else quadratically ?

LetR(U) = R(u,\) = u —tan(u) — \. Let t = tan(u) and let z = 1 4+ 2. tand z can

be defined by the system :
dt= zdu

z= 1+

These equations are quadratic with respect to the Taylor coefficients of u,t and z.
Then Ry and its differential form dR; are defined :

u—t—»X\ Not needed
Rf(Uf) = Rf(u, At Z) = |t— tan(u) de(Uf,de) = dt
z-1—12 Not needed
u—t—»X\ 0
And the operators are C = ,L(Up) = 0 ;Q(U U = | 0 |,
z —f2

0
dL(de) = |:dt:| and dQ(Uf,de) =
0
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The quadratic framework

Transcendental example : Pendulum

Pendulum subject to an angular spring at position 6 = .
The equilibrium is given by :

r(0, k, M) = sin(8) + k(0 — %)

Definition of the auxiliary variables, together with the differentiated forms (when

needed) :
s= sin(0) ds= cdf
c= cos(0) dc= —sdb
Min, = /:7,

Define Us = (0, k, M, s, ¢, Mj,, ) yields the "quadratic” recast

S+ k(6 — Mjp, ) Not needed

. s —sin(6) | ds—cdf

Ri(Ur) = ¢ — cos(0) dRy(Uy, dUy) = dc + sdf
My M — 1 Not needed
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The quadratic framework

End of the Algebraic elements of theory.
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More on the ANM

Taylor series algebra

@ Product of Taylor series u(a) x v(a) :

(up + aus + @up + -+ aVuy) x (vo + avy + &vo +--- + avwy)
= UpVo + + & (v + th v +U0V2)+"'+3NZ/AL0UN7/'V/
It is truncated at order N.

@ Differentiation of Taylor series %(a) :

0
@(“OJF +a2u2+--~+aNuN>:u1+ +38°u3 4 -+ NaV""uy

The constant coefficient uy is not anymore in the development, that goes now up

to order N — 1.
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More on the ANM

Manlab 4.0

Let R(U) = 0 be

r(uy,uo, N) = 2uy — Up + 100—1—
I’g(U1 y UZ,)\) = 2u, —uy +100—2=—

1+u +u2 N

1+u +u

vi =14 u + uuy
Vo =144 U+ Uslso

Introduce the auxiliary variables :
vy =1/wn

Vy = 1/V2
@ All these expression are quadratic, or easily made quadratic

@ 'linear declaration rule" : an auxiliary variable v; cannot appear on the left hand
side before it has been explicitely defined as v; = f(U, vq, va, ..., v;_1). Ensures

that g—sz is invertible.

Let Ua = [v4, Vo, v3, V4] be the vector of auxiliary variables

Let Uy = [U, Ug] 7



More on the ANM

Manlab 4.0

The original system R(U) = 0 is replaced by the equivalent quadratic one R(Us)

o= 2uy — Up + 100Uy vz — A =0
ry = 2up — uy +100Uovs — (A +u) =0
Fauxt = V4 — 14 Uy + Uy * Uy =0
Faux2 := Vo — 1+ Us+ Uz x Up =0
lauxz '= Vg xVvy —1 =0
Faux4 = V4*V2—1 =0

Tensor formalism : this quadratic system may be written
R,'ZC,‘-i-L,']'UI'-i-Q,'ijI'Uk i,j,k=1,2,...n

with C,L,Q being tensors of order 1, 2 and 3
Here, we have 7 components C;, 49 components L; and 343 components Q.

But most of them are zero!
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More on the ANM

Manlab 4.0 : Sparse tensor formalism

The sparse tensor C, L and Q are defined by the following lists (as in Matlab for a
sparse matrix)

@ order 1 tensor C
ic= [ 2 5 6]
vC= [-p -1 -1 ]

@ order 2 tensor L

ir=[(1 1 1 2 2 2 3 3 4 4 5 6]
jL= (1 2 7 1 2 7 1 3 2 4 5 6]
vi= [2 -1 -1 -1 2 -1 -1 1 -1 1 1 1]

@ order 3 tensor Q

ig= [ 1 2 3 4 5 6]
jo= [ 1 2 1 2 3 4]
ko= [ 5 6 1 2 5 6]
vQ= [100 100 -1 -1 1 1 ]

In Manlab 4.0, these lists are automatically generated from the quadratic system.
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More on the ANM

Manlab 4.0 : Sparse tensor formalism

How to get the lists defining the sparse tensor, from the quadratic expression
R(X):=07?

Polarization formula :

C = R(0)
LX) = 5 (R(X) — R(-X))

QX,Y) =~ (R(X+Y)—R(X = Y) = R(Y) + R(—Y))

FNJJEN
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More on the ANM

Manlab 4.0 : Sparse tensor formalism

Using these lists, the computation of the residual vector R(U) = C + L(U) + Q(U, U)
stand in one (Matlab) line.

R =sparse (iC,ones(1l,size(iC,2)),vC’,neq, 1)
+ sparse(iL,ones (1l,size (iL,2)),vL’ .*U(JL),neq,1)
+ sparse (iQ,ones (1l,size (iQ,2)),vQ’ .* (U(]JQ) .*U(kQ)),neq, 1)

For the jacobian matrix dRdU = L(.) + Q(U,.) + Q(.,U)

dRdU = sparse(il, jL,sys.vL,neq,ninc)
+ sparse (iQ,kQ,vQ’ .xU(JjQ),neq, ninc)
+ sparse (iQ, jQ,vQ’ .xU (kQ) ,neq, ninc)
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More on the ANM

Manlab 4.0 : Condensation

The linear problem to be solved at each order p reads :

B Aaux U _ Fauxp < Raux

A C | |Uax| | Fp +«~ R
Thanks to the "linear declaration rule", the matrix Aaux is triangular which allows an
easy and cheap block solving

We first solve
[A -C Aa_Jx B] (U] = [FP -C Aa_JxFaux p]

where [A -C A;JX B] is the jacobian matrix of the original (non quadratic) system.
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More on the ANM

Bifurcation detection using series analysis

Numerical evidence : near a simple bifurcation, a geometric series emerge in the Taylor

series.
Ua) =Ug+aU;+8U,+a8Us+...

First order analysis : expression of a pertur-
bed branches near a simple bifurcation [Co-

chelin & Médale, 2013]

a
U@ =Ug+ aly, —¢ —9—U,
1-%

=24 (2)2+(2)° + -, a geometric serie with common ratio

ST

a
1-3
After each Taylor series computation, we look for an emerging geometric series

o
o
When detected , it is extracted, completed to infinity and replaced by a fraction

~ N ~ a
U@ =Uo+al; +20,+---+a"" Up1+5 <1 _a>usca,e
d

0(a) cleaned series

We get d, Uy and can go further the bifurcation thanks to the cleaned series.
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