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Summary of the method :

Find the periodic solution of a differential system

f(t, z, ż, λ) = 0 z(t) ∈ R
n

by using a high order Fourier series expansion

z(t) = Z0 +
H∑

k=1

Zc,k cos(kωt) +
H∑

k=1

Zs,k sin(kωt)

The resulting (nonlinear) algebraic system on the Fourier coefficients reads :

R(U) = 0 with U = [Z0,Zc,k , Zs,k , ω, λ] = [Z, ω, λ]

Then the solution is continued with respect to λ using the Asymptotic Numerical
Method (ANM).
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The cornerstone

Harmonic Balance Method HBM : insert
θ(t) = θ0 +

∑H
k=1 θc,k cos(kωt) +

∑H
k=1 θs,k sin(kωt)

into, for example,

R(θ(t), λ) := θ̈ + λθ̇ + θ3 + sin(θ) = 0

and "balance" the harmonics !

Asymptotic Numerical Method ANM : insert
u(a) = u0 + a u1 + a2 u2 + · · ·+ aN uN

into

R(u, λ) := u + u2 +
tan(u)

1 + u
− λ = 0

and collect term with the same powers !

How to :

use Automatic Differentiation to do the job : nice for the user but poor efficiency.

do a quadratic recast of the equation : then the job becomes easy and efficient
for ANM and HBM!
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Live demonstration.

Manlab-4 formation



Overview

Continuation of periodic solutions with Manlab-4

More on the HBM in Manlab-4

Pendulum
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One Period of oscillation of the Pendulum. T = 17.86s
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Rössler system

A kind of Lorenz system.
When b = 0.2, a cascade
of period doubling bifurca-
tions occurs leading to a
chaotic behavior.






ẋ = −y − z

ẏ = x + by

ż = b + z(x − a)

On the right : Phase dia-
gram after 4 period dou-
blings.
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Predator-Prey model

A predator-prey model.
The periodic trajectories
"turn" around the center
(x, y) = (1, 1).







ẋ =
1

2
x(1 − y)

ẏ = y(x − 1)

On the right : Several tra-
jectories.
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Saxophone model : multiphonics

After listening to some sounds, these are some time-domain signals of the internal
acoustic pressure.
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Overview of Manlab-4

Equations (E) Unknowns (X)

Type of the unknowns: 
Algebraic, Function of the time

Quadratic recast  of 
the equations (Eq)

If X(t) is periodic, quasi-periodic, or 
discretized on time samples  

(Eq) is projected 

on a suitable basis of representation: 
by Harmonic Balance Method (HBM), 

collocation, etc 

A quadratic algebraic system 
(Eq,alg) is obtained.

The continuation of this quadratic algebraic system (Eq,alg) is performed 

using the Asymptotic Numerical Method.

Manlab-4 formation



Overview

Continuation of periodic solutions with Manlab-4

More on the HBM in Manlab-4

Periodic solutions of ODE

Periodic solutions of IDAE

Initialization

Quadratic recast in ODE for HBM

Framework for Ordinary Differential Equations (ODE) :

To find the periodic solution of the ODE system

0 = f (z, λ)− ż z ∈ R
n

first introduce auxiliary variables zf = [z; za] → quadratic DAE system

0 = c0 + λc1 + λ2c2 + l0(zf) + λl1(zf) + q(zf, zf)− m(żf)

then apply Fourier series expansion (HBM)

zf(t) = Zf0 +
H∑

k=1

Zfc,k cos(kωt) +
H∑

k=1

Zfs,k sin(kωt)

the vector of all Fourier coefficients is written

Zf = [Zf0, Zfc,k ,Zfs,k ]
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The resulting algebraic system on the Fourier coefficients is of the form

R(Zf, ω, λ) = C0 + λC1 + λ2C2 + L0(Zf) + λL1(Zf) + Q(Zf,Zf)− ωM(Zf)

This system is already quadratic ! in all the unknowns Zf, ω and λ.

HBM gives as many equations as Fourier coefficients in Zf. The additional
unknown ω is compensated by a phase equation : żi (0) = 0.

Advantages of ODE framework : stability available.

Drawback : double size system for mechanical systems with second order time
derivatives
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The examples of the pendulum

Dimensionless parameters : m = 1 and g = 1.

Energy of the free system :

H(θ, θ̇) = θ̇2

2
+ 1 − cos(θ) + k

2
(θ − π

M
)2

Equation of the motion :
θ̈ + ξθ̇ + sin(θ) + k(θ − π

M
) = F cos(ωt)

Steps :

M, k and F are constant, development about θ = 0 :

θ̈ + ξθ̇ + θ − θ3

6
+ k(θ − π

M
) = F cos(ωt)

M, k and ω are constant, development about θ = 0 :

θ̈ + ξθ̇ + θ − θ3

6
+ k(θ − π

M
) = F cos(ωt)

M and k are constant, free system without
simplification :
θ̈ + sin(θ) + k(θ − π

M
) = 0

k

g

m
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Basic example : Simplified Pendulum

Forced pendulum subject to an angular spring, developed around θ = 0 :

θ̈ + ξθ̇ + (θ −
θ3

6
) + k(θ −

π

M
) = F cos(λt)

First order ODE :

θ̇ = φ

φ̇ = −ξφ− (θ − θ3

6
) − k(θ − π

M
) + F cos(λt)

The auxiliary variable ψ = θ2 is added.
It yields the full quadratic DAE to give to Manlab-4 :

0 = φ −θ̇

0 = −ξφ− (θ − ψθ

6
) − k(θ − π

M
) + F cos(λt) −φ̇

0 = ψ − θ2
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General framework

Find the periodic solution of Implicit Differential Algebraic Equations (IDAE) :

g(t, z, ż, z̈, λ) = 0 z(t) ∈ R
n

first, introduce auxiliary variables zf = [z; za] → quadratic DAE system

c0 + λc1 + λ2c2 + l0(zf) + λl1(zf) + q(zf, zf) + d(żf) + λd1(żf) + dd(z̈f) = 0

then apply HBM

The resulting algebraic system on the Fourier coefficients is of the form

R(Zf, ω, λ) = C0 + λC1 + λ2C2 + L0(Zf) + λL1(Zf) + Q(Zf,Zf)
+ωD(Zf) + λωD1(Zf) + ω2DD(Zf)

the auxiliary variables Λ = λω and Ω = ω2 are added to make the algebraic
system quadratic.
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Simple example : Simplified Pendulum

Forced pendulum subject to an angular spring, developed around θ = 0 :

θ̈ + ξθ̇ + (θ −
θ3

6
) + k(θ −

π

M
) = F cos(λt)

The auxiliary variable ψ = θ2 is added.
It yields the full quadratic DAE to give to Manlab-4 :

0 = θ̈ + ξθ̇ + (θ − θψ

6
) + k(θ − π

M
)− F cos(λt)

0 = ψ − θ2
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Conservative systems

equation of a conservative system

Mz̈ + fnl(z) = 0

It already defines a family of periodic solutions without the need of any
continuation parameter !

add artificial damping (unfolding terms) to regularize the continuation

Mz̈ + λż + fnl (z) = 0

Once solved, λ is found to be zero since no periodic solution exist otherwise.

Manlab-4.0 can take into account these two terms Mz̈ and λż automatically.

However, the stability analysis of these systems is no more available.
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A free Pendulum

Free pendulum subject to an angular spring :

θ̈ + sin(θ) + k(θ −
π

M
) = 0

Add the unfolding term λθ̇ to regularize the continuation :

θ̈ + λθ̇ + sin(θ) + k(θ −
π

M
) = 0

The auxiliary variables s = sin(θ) and c = cos(θ) are added.
It yields the "quadratic" recast with differential form (when needed) :

0 = θ̈ + λθ̇ + s + k(θ − π
M
)

0 = s − sin(θ) 0 = ds − cdθ

0 = c − cos(θ) 0 = dc + sdθ
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Initialization

The initialization on a periodic solution branch is generally the most

difficult part in Manlab-4.

Several remarks :

Forced system are usually easy to initialize. (far from the resonances)

If an analytic approximation with H = 1 is available, it usually works.

For autonomous systems, starting at low amplitude with a linear guess
usually works.
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Vector of unknown and implementation in Manlab-4

In Manlab-4, the full vector of unknowns is Uf = [Z;ω;λ; Za; Ω; Λ] where Z and
Za are the Fourier coefficients of the main and auxiliary variables.

The matrices of Fourier coefficients Z and Za are given in a unique matrix Zf that
contains in column the Fourier developments of all the variables :

Z =


















Z0 constant
Zc,1 first cosine
Zc,2 second cosine

.

.

.
.
.
.

Zc,H last cosine
Zs,1 first sine

.

.

.
.
.
.

Zs,H last sine


















Zf =























Z(1)

︷︸︸︷

Z
(1)
0

Z(2)

︷︸︸︷

Z
(2)
0

...
︷︸︸︷

Z(nz)

︷ ︸︸ ︷

Z
(nz)
0

Z
(1)
a

︷ ︸︸ ︷

Za
(1)
0

...
︷︸︸︷

Z
(nza)
a

︷ ︸︸ ︷

Za
(nza)
0

Z
(1)
c,1

Z
(2)
c,1

Z
(nz)
c,1

Za
(1)
c,1

Za
(nza)
c,1

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

Z
(1)
c,H

Z
(2)
c,H

Z
(nz)
c,H

Za
(1)
c,H

Za
(nza)
c,H

Z
(1)
s,1

Z
(2)
s,1

Z
(nz)
s,1

Za
(1)
s,1

Za
(nza)
s,1

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

Z
(1)
s,H

Z
(2)
s,H

Z
(nz)
s,H

Za
(1)
s,H

Za
(nza)
s,H






















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Useful functions built-in Manlab-4

init_U0(Zf,ω,λ) : gives the vector Uf of all the unknowns.

init_Hdiff(Uf) : gives the vector Uf of all the unknowns for a different
harmonics number.

get_Ztot(Uf) : gives the vector Zf,the frequency ω and the continuation
parameter λ (inverse of init_U0).

getcoord(’cos’,i,h) : gives the coordinate of Z
(i)
c,h

in the total vector of

unknowns Uf.
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Periodic solutions of IDAE
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End of the user part.
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Stability in frequency domain

Initialization after Hopf and Neimark-Sacker bifurcations

Hill’s Method for a frequency domain stability algorithm

Let ż = F(z) be an Ordinary Differential Equation and let t 7→ z0(t) be a periodic
solution of this system.

Perturbation :
z(t) = z0(t) + ε(t)

Linear development of F around z0(t) :

ε̇(t) = dFz0
(t)ε(t)

Floquet theorem : ε(t) = e
αt p(t), with p a periodic function. It gives :

αp(t) + ṗ(t) = dFz0
(t)p(t)

Hill’s method : p and dFz0
(t) are periodic. Let P be the infinite Fourier

development of p(t).
HP = αP

Eigenvalue problem with Hill’s matrix H.
H is the Jacobian matrix of the algebraic system obtained after the Harmonic Balance.
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Stability in frequency domain

Initialization after Hopf and Neimark-Sacker bifurcations

The SystODE class of Manlab-4.1.3.

Framework for Ordinary Differential Equations (ODE) :

Find the solutions of the ODE system

0 = f(z, λ)− ż z ∈ R
n

first, recast quadratic zf = [z; za] → quadratic DAE system

0 = c0 + λc1 + λ2c2 + l0(zf) + λl1(zf) + q(zf, zf)− m(żf)

Equilibrium are given by the solutions to the equations :

0 = c0 + λc1 + λ2c2 + l0(zf) + λl1(zf) + q(zf, zf)

Periodic solutions are given by the solutions to the equations :

R(Zf, ω, λ) = C0 + λC1 + λ2C2 + L0(Zf) + λL1(Zf) + Q(Zf,Zf)− ωM(Zf)
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Stability in frequency domain

Initialization after Hopf and Neimark-Sacker bifurcations

After condensation, stability information are directly available :

For equilibrium through the eigenvalues of the Jacobian matrix J.

At a Hopf point z0 there exists P 6= 0 such that JP = iωP.

It gives the starting periodic orbit after Hopf bifurcation of the form
z(t) = z0 + P exp(iωt).

For periodic solution through the eigenvalues of Hill’s matrix H.

At a Neimark-Sacker (NS) point Z0 there exists P 6= 0 such that
HP = iω2P.

It gives the starting quasi-periodic orbit after NS bifurcation of the form
Z(t) = Z0 + P exp(iω2t).

These initializations are automatized in Manlab-4.1.3.
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