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MANLAB The kernel: continuation of algebraic systems Continuation of periodic solutions

MANLAB

I An interactive path-following and bifurcation analysis software based on the

Asymptotic numerical method;

I developed by the Bruno COCHELIN and Christophe VERGEZ team of

Laboratoire de Mécanique et d’Acoustique (LMA) de Marseille since 2004:

http://manlab.lma.cnrs-mrs.fr/

I addition of stability computation by Arnaud LAZARUS (Institut d’Alembert,

Paris) and Olivier THOMAS (Arts et Métiers, Lille)
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MANLAB versions

I Manlab 1 (2009, R. Arquier PhD)  a continuation kernel for quadratic algebraic

systems of equations;

I Manlab 2 (2010, S. Karkar PhD)  addition of Harmonic balance method for the

continuation of periodic orbits;

I Manlab 2 (2010, S. Karkar PhD)  addition of Harmonic balance method for the

continuation of periodic orbits + stability computation by the Hill method +

Fortran acceleration;

I Manlab 3 (2011, 2014, S. Karkar)  Tensor acceleration

I Manlab 4 (2018, L. Guillot PhD)  complete rewriting of the code with high

acceleration + quasi-periodic solutions . . .
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General framework

We consider the N -dimensional algebraic system

R(U , λ) = 0,

with

R : RN × R −→ RN

(U , λ) 7−→ R(U , λ)

The implicit functions theorem says that if R is continuously differentiable with

respect to U and λ and if ∂R/∂U is invertible, their exists a continuously

differentiable function g such that:

g : R −→ RN

λ 7−→ g(λ) = U
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General framework

We can then wind a network of curves of U as a function of λ:
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General framework

We can then wind a network of curves of U as a function of λ:

Bifurcations

λ

U

But in some bifurcation points, the curves can cross or have a vertical tangent with

respect to λ.

A continuation (or path following) method is a numerical method

that computes U for several values of λ in a given set and that

manages the bifurcation points.
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Path parametrization
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A way of dealing with the bifurcation points is to add a path parametrization. For

instance, define a scalar a such that:
U = U(a)

λ = λ(a)

f(U , λ, a) = 0

⇒
{

R(U(a), λ(a)) = 0

f(U , λ, a) = 0

A new set of algebraic equations is defined, of size RN+1 which is not singular as a

function of a.
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Path parametrization
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Depending on the definition f(U , λ, a) = 0 of the path parameter a, several

parametrization are available (arclength, pseudo-arclength, secant. . . ) (see for

instance [Seydel 2010]).
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Path parametrization

λ

U
a

Ũ1

Ũ(a) −
Ũ
0

Ũ(a)

Ũ0

In Manlab, a pseudo-arclength parametrization is used. Let us first define

Ũ = [U t λ]t such that R(U , λ) = R(Ũ). Then, a is defined by:

f(U , λ, a) = 0 ⇒ a =
[
Ũ(a)− Ũ0

]t
Ũ1

with Ũ0 = Ũ(a = 0) and Ũ1 = ∂Ũ/∂a|a=0.
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Numerical solving
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. Newton-Raphson method

I the most used;

I enables the computation of a discrete set of solutions such that

R(U(a), λ(a)) = 0 by sweeping the a parameter;

I one has to control the a stepping. . .
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Numerical solving

Analytic

definition
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. The asymptotic numerical method (ANM)

I Méthode Asymptotique Numérique (MAN) in french;

I Initiated by M. Potier-Ferry in Metz, France in the 1990’;

I Power series expansions of the unknowns as a function of a: the branches are

continuous function of a;

I Automatic stepping, very few control parameters;
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Asymptotic Numerical Method

I The unknowns U and λ are expanded as power series of a ∈ R of order n ∈ N:

U(a) = U0 + aU1 + a2U2 + . . .+ anUn,

λ(a) = λ0 + aλ1 + a2λ2 + . . .+ anλn.

I For efficiency of the numerical procedure, we write R(Ũ) quadratically:

R(Ũ) = C + L(Ũ) + Q(Ũ , Ũ)

where C ∈ RN , L ∈ RN and Q ∈ RN are constant, linear and quadratic

functions of Ũ .

I Introducing the above equations into R(Ũ) = 0 for all a ∈ R leads to a cascade

of successive problems:

order 0: R(Ũ0) = 0 ← NL initial system

order 1: J0Ũ1 = 0 ← Linear system

order p = 2, 3, . . . n: J0Ũp = −
p−1∑
i=1

Q(Ũi, Ũp−i) ← Linear system

n linear systems with the same “stiffness” matrix J0 = ∂R/∂Ũ |Ũ0
.
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Asymptotic Numerical Method
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I The power series above defined have a radius of convergence such that the range

of utility of a given series is defined by the value of amax such that:

∀a ∈ [0 amax], ||R(Ũ(a)|| ≤ ε

where ε is a user tolerance parameter.

I amax is automatically computed.

I The complete branch of solutions is obtained by successive power series. The

k+ 1 seris is initiated such that its first point equals the last point of the previous

one: Ũk+1
0 = Ũ(amax)k.
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Asymptotic Numerical Method
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I The tolerance ε does not grow from branches to branches.

I In Manlab, the first point of the first branch Ũ0 is obtained by a

Newton-Raphson method. Its accuracy conditions the one of the whole branche.

Local Newton-Raphson corrections are possible with the interface.

I A bifurcation detector, special to the ANM, is also implemented in Matlab 4.
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Two parabolas
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Two parabolas

I We consider two parabolas: {
x = y2

y = (x− 2)2 + a;

where (x, y) are two variables and a a scalar paramater.

I Those two parabolas are solution of the implicit equation:

R(x, y) = (x− y2)[y − (x− 2)2 − a] = 0
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In Manlab

R(x, y) = (x− y2)[y − (x− 2)2 − a] = 0

I Add some auxiliary variables to obtain a quadratic system:{
u1 = x− y2

u2 = y − (x− 2)2 − a

I Implement the following system, quadratic in the variables U = [x y u1 u2]t:

Primary system: R1 = u1u2 = 0

Auxiliary system:

{
R1aux = u1 − x+ y2 = 0

R2aux = u2 − y + (x− 2)2 + a = 0

I Four .m files:

– the main file: your name.m: contains all the parameters of the simulation;

Its name can be chosen by the user; this file has to be executed to launch

the interactive simulation;

– the equation file: equation.m: where the algebraic system is coded;

– two optional files for automatic display: point display.m and

global display.m O. Thomas 12/27
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Manlab screenshot
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Framework

I We consider a N -dimensional first order dynamical system:

ẋ = f(x, λ, t),

with

f : RN × R× R −→ RN

(x, λ, t) 7−→ f(x, λ, t)

where t is the time and λ a control parameter.

I We look for T -periodic solutions (at frequency ω = 2π/T ) of this system:

∀T ∈ R x(t+ T ) = x(t).

I For this, we expand x in Fourier series:

x(t) = x(0) +
H∑

h=1

(
x(hc) cosωt+ x(hs) sinωt

)
,

and we use the the harmonic balance method (HBM), which leads to replace the

initial dynamical system by an algébraic dynamical system R(X, λ, ω) = 0 where

X collects all the Fourier series coefficients x(0), x(hc), x(hs) of x.
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In MANLAB, four cases

I Autonomous system (ex: Van der Pol)

ü− λ(1− u2)u̇+ u = 0

– N primary unknowns + λ + ω ⇒ N + 2 unknowns

– N primary equations + 1 phase condition ⇒ N + 1 equations

sys=SystHBQ(nz,nz aux,H,@equations,@point display,@global display,

parameters,’autonomous’,’standard’);

sys.zi phase = 1; % Indice of component for the phase condition

I Autonomous conservative system (Hamiltonian, ex: free Duffing)

ü+ λu̇+ u+ u3 = 0

– N primary unknowns + λ + ω ⇒ N + 2 unknowns

– N primary equations + phase condition ⇒ N + 1 equations

sys=SystHBQ(nz,nz aux,H,@equations,@point display,@global display,

parameters,’autonomous’,’standard’);

sys.zi phase = 1; % Indice of component for the phase condition

O. Thomas 16/27
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In MANLAB, four cases

I Forced system at Ω and Ω is the bifurcation parameter (ex: Duffing)

ü+ 2µu̇+ u+ u3 = F cos Ωt

– N primary unknowns + λ = Ω ⇒ N + 1 unknowns

– N primary equations ⇒ N equations

parameters.angfreq = ’omega’;

sys=SystHBQ(nz,nz aux,H,@equations,@point display,@global display,

parameters,’forced’,’standard’)

I Forced system at fixed Ω with a bifurcation parameter (ex: Duffing)

ü+ 2µu̇+ u+ u3 = λ cos Ωt

– N primary unknowns + λ ⇒ N + 1 unknowns

– N primary equations ⇒ N equations

parameters.angfreq = 2; % fixed value of the angular frequency

sys=SystHBQ(nz,nz aux,H,@equations,@point display,@global display,

parameters,’forced’,’standard’)
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The phase condition in Manlab

I For forced systems, the time reference is given by the forcing signal, so that the

phase of the periodic solution x(t) is referenced with respect to the phase of the

forcing signal. No phase condition is needed.

I For autonomous systems, there is no reference for the phase of the periodic

solution of the system and if x(t) is solution, x(t+ τ) for any τ < T is also

solution. One has then to impose the phase of the seeked periodic solution to

make it unique.

I In harmonic balance methods, a way is to set to zero a given harmonic of a given

component of x(t) (for instance, the sine component of the first harmonics of the

i-th. component: x
(1s)
i = 0. This is the phase condition.

I In Manlab 4.1.5, it is the time derivative at t = 0 of the i-th. component of x(t)

which is set to zero:

dxi

dt
(t = 0) = 0 ⇒

H∑
h=1

hx
(hs)
i = 0

I The component number i is set by sys.zi phase = i; in Manlab.
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Storage of data in Manlab

I In Manlab, the basic object is a power

series of Ũ :

Ũ(a) = Ũ0+aŨ1+a2Ũ2+. . .+anŨn,

valid for a ∈ [0 amax]. For graphical

purpose, it is computed at several

points between a = 0 and a = amax.

All those data (U0, Ũ1, amax etc.)

are stored in a section object. An

ensemble of sections is a diagram

object.

I For a given simulation, you have

access to a particular section or the

whole diagram by clicking on the

buttons of the Export section of the

Manlab interface.
O. Thomas 19/27
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Basic export

I If you click on the Point button, and you select a given point of the diagram, you

simply obtain a vector U that contains all the components of Ũ .

I If you click on the Section button, and you select a given section of the diagram,

you obtain an object Section that contains all the data of the section. In

particular, Section.Upp contains the components of Ũ for all the points of the

section.

I If you click on the Diagram button, you obtain a cell array of section objects.

In particular, Diagram{3}.Upp contains the components of Ũ for all the points of

the 3rd. section of the Diagram.

U =


U

λ

Uaux

 Section.Upp =


. . . U . . .

. . . λ . . .

. . . Uaux . . .


︸ ︷︷ ︸
number of computation

points in the section
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A convenient object for Diagrams

I Diagram objects can be converted to a simplier object:

[Diag] = calcdiagUpp(sys,Diagram)

Diag.DiagUpp =


. . . U . . .

. . . λ . . .

. . . Uaux . . .


︸ ︷︷ ︸
number of computation
points in the diagram

where Diag.DiagUpp contains Ũ for all the points of the diagram in a single

matrix. Diag.Stabinfo and Diag.change contains data relative to the stability

of the branches.
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Structure of Upp for HBM simulations

For HBM simulations, U and Uaux contains all the Fourier series coefficients of X(t)

as well as ω, ω2 and λ2 in the following way:

Xi =



x
(0)
i

x
(1c)
i

...

x
(Hc)
i

x
(1s)
i

...

x
(Hs)
i


Diag.DiagUpp =



. . . X1 . . .

. . .
... . . .

. . . XN . . .

. . . ω . . .

. . . λ . . .

. . . X1aux . . .

. . .
... . . .

. . . XNaux . . .

. . . ω2 . . .

. . . λ2 . . .


︸ ︷︷ ︸

number of computation
points in the diagram
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Display / computation functions for single point U
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Let U be the result of a single point export.

I Utime = calcperiodHBM(sys,U,Icalc,time)

plotperiodHBM(sys,U,Idisp)

computes / plots the periodic time evolution of several variables.

I plotbarHBM(sys,U,Idisp)

plotbarsincosHBM(sys,U,Idisp)

plots the harmonics content of several variables as a bargraph
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Display / computation functions for Sections / Diagram

Let Diag be a Section or a Diagram / Diag object.

I plotdiagnormHBMbif(sys,Diag,Idisp,bifpara str)

plotdiagHBMbif(sys,Diag,Idisp,Hdisp,bifpara str)

plotdiagHBM(sys,Diag,Idisp,Hdisp,bifpara str)

plots the amplitude or the L2 norm of the variables in Idisp as a function of ω

or λ (bifpara str=’omega’ or bifpara str=’lambda’). For the first two

functions, the type of bifurcations are specified by letters (’B’: branch point;

’PD’: period doubling; ’NS’: Neimark-Sacker);

I plotdiagYHBM(sys,Diag,Y,bifpara str)

plotdiagXYHBM(sys,Diag,X,Y)

The same as before with y-axis (or both axis) ploted with the stability. X and Y

can be ontained by

calcdiagHBM(sys,Diag,Icalc,Hcalc)

calcdiagUpp(sys,Diagram)

I Other functions are under addition, for Manlab 4.1.6. . .

O. Thomas 24/27



MANLAB The kernel: continuation of algebraic systems Continuation of periodic solutions

During simulation plots

Don’t hesitate to include the previous defined functions in:

I point display.m → applies to a single point U

I global display.m → applies to a section or the diagram.
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Doing plots and post-treatments

I do your Manlab simulations. Check

them during the simulation by

programming point display.m and

global display.m;

I when you know your bifurcation

diagram, compute and export using

the “Diagram” button of the

interface. It creates a global variable

called Diagram that contains all the

results of the simulation.

I Save all the variables (Diagram, sys

and the others).

> save simulation.mat

I Apply all the previous defined display

functions.

O. Thomas 26/27
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