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Aim of the talk :

Describe the so-called Asymptotic Numerical Method,

a continuation method

using high order Taylor series expansions.
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Continuation

Goal : determine solution branches of

R(u, λ) = 0

with u ∈ R
n and λ ∈ R

and R : Rn+1 7→ R
n is a smooth function.
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The cornerstone

To compute the Taylor series of the solution-branch :

Insert the Taylor series

u(a) = u0 + a u1 + a2u2 + · · ·+ aN uN

Into the algebraic equation

R(u, λ) := u + u2 +
tan(u)

1 + u
− λ = 0

And collect terms with the same powers !
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Live demonstration.
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Logistic Map

Compute the iterates of the logistic
map

f (x) = µx(1 − x)

The system solved is







x1 = f (x0)
x2 = f (x1)

.

.

.
xN−1 = f (xN−2)

xN = f (xN−1)

with x0 = 0.5 and N = 5000.
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Pendulum

Compute the orbit of the pendulum

{
θ̇ = φ

φ̇ = − sin(θ)

with θ(0) = π
2

and φ(0) = 0. The
system is solved with a λ-scheme :

{
θn+1 = θn + hφn+λ

φn+1 = φn − h sin(θn+λ)

with xn+λ = (1−λ)xn+λxn+1, and

h = 2π
100

.
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Deformation of a complex structure
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Overview of Manlab-4

Equations (E) Unknowns (X)

Type of the unknowns: 
Algebraic, Function of the time

Quadratic recast  of 
the equations (Eq)

If X(t) is periodic, quasi-periodic, or 
discretized on time samples  

(Eq) is projected 

on a suitable basis of representation: 
by Harmonic Balance Method (HBM), 

collocation, etc 

A quadratic algebraic system 
(Eq,alg) is obtained.

The continuation of this quadratic algebraic system (Eq,alg) is performed 

using the Asymptotic Numerical Method.
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Continuation

Goal : determine solution branches of

R(U) = R(u, λ) = 0

where U = [u, λ].

with u ∈ R
n and λ ∈ R

and R : Rn+1 7→ R
n is a smooth function.
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Taylor series based continuation

let U0 be a regular point with ||R(U0)|| < εR (tolerance).

let U1 be the tangent at U0.

let a be the pseudo arc length parameter a = UT
1
.(U− U0).

Implicit Function theorem : The solution branch passing through U0 may be
represented as a (truncated) Taylor series with respect to the pseudo-arclength
parameter a.

U(a) = U0 + aU1 + a2U2 + · · ·+ aNUN and N = 20 or 30

Series computation : solve a succession of linear systems that share the same
stiffness matrix ∂R

∂U
Up = F nl

p (U1, . . . ,Up−1)

λ

U

U0

U1

a Exact solution

Taylor series solution
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The Domain of utility of the series is the interval [0, amax ] for which ||R(U(a))|| < εR

A good approximation : R(U0 + · · ·+ aNUN) ≃ R(U0) + aN+1RN+1,

So, if one requires ||aN+1RN+1|| < εR then amax =
(

εR

||RN+1||

) 1
N+1

λ

U

U01

U02 U03

a ∈ [0,amax1
]

a ∈ [0,amax2
]

a ∈ [0,amax3
]

The complete solution branch is obtained as a succession of local Taylor series

U(a) = U0 + aU1 + a2U2 + · · ·+ aNUN avec a ∈ [0, amax ]

.
piece-wise continuous representation

auto-adaptative step length→ Robustness

no algorithmic parameter
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The cornerstone

To compute the Taylor series of the solution-branch :

Insert the Taylor series

u(a) = u0 + a u1 + a2u2 + · · ·+ aN uN

Into the algebraic equation

R(u, λ) := u + u2 +
tan(u)

1 + u
− λ = 0

And collect terms with the same powers !

Two techniques :

use Automatic Differentiation to do the job : nice for the user but poor efficiency.

do a quadratic recast of the equations : then the job becomes easy and efficient
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Quadratic recast

How to recast the algebraic system R(U) = 0 in a quadratic way?

Goal : find auxiliary variables Ua and Rf such that

Rf(Uf) = C + L(Uf) + Q(Uf,Uf)

with Uf = (U,Ua),

C constant,

L linear,

Q quadratic.

Note that Rf(Uf) =

[
R(Uf)
Ra(Uf)

]

with ∂Ra
∂Ua

invertible and R(Uf) = R(U).
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The examples of the pendulum

Dimensionless parameters : m = 1 and g = 1.

Energy of the system :
H(θ) = 1− cos(θ) + k

2
(θ − π

M
)2

Equation of the motion :
θ̈ + sin(θ) + k(θ − π

M
) = 0

Steps :

M = 2 is constant, development about θ = 0 :

θ̈ + θ − θ3

6
+ k(θ − π

2
) = 0

k = 0.1 is constant, development about θ = 0 :

θ̈ + θ − θ3

6
+ 0.1(θ − π

M
) = 0

Without simplification :
θ̈ + sin(θ) + k(θ − π

M
) = 0

k

g

m
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How to recast polynomials quadratically ?

Let R(U) = R(u, λ) = u3 + u + 1− λ.

Let v = u2.

U = (u, λ) and Ua = v then Uf = (U,Ua) = (u, λ, v).

Then Rf is defined :

Rf(Uf) = Rf(u, λ, v) =

[
uv + u + 1−λ

v−u2

]

And the operators are C =

[
1
0

]

, L(Uf) =

[
u − λ

v

]

, Q(Uf,Uf) =

[
uv

−u2

]

.
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Basic example : Simplified Pendulum

Pendulum subject to an angular spring at position θ = π
2

, developed around θ = 0.
The equilibrium is given by :

r(θ, k) = (θ −
θ3

6
) + k(θ −

π

2
)

Definition of the auxiliary variables

ψ = θ2

Yields the quadratic recast

Rf(Uf) = Rf(θ, k , ψ) =

[
θ− θψ

6
+ kθ−k π

2
)

ψ − θ2

]

And the operators are C =

[
0
0

]

, L(Uf) =

[
θ − k π

2
ψ

]

, Q(Uf,Uf) =

[
− θψ

6

−θ2

]

.
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How to recast fractions quadratically ?

Let R(U) = R(u, λ) = 1
u
+ u − λ.

Let v = 1
u

. v can be defined implicitly through uv = 1.

Then Rf is defined :

Rf(Uf) = Rf(u, λ, v) =

[
v + u−λ

uv−1

]

And the operators are C =

[
0
−1

]

, L(Uf) =

[
u + v − λ

0

]

, Q(Uf,Uf) =

[
0

uv

]

.

Here, Ra(Uf) = uv − 1 and ∂Ra
∂Ua

= ∂Ra
∂v

= u. It is invertible if and only if u 6= 0.
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Simple example : Another Simplified Pendulum

Pendulum subject to an angular spring at position θ = π
M

, developed around θ = 0.
The equilibrium is given by :

r(θ,M) = (θ −
θ3

6
) + 0.1(θ −

π

M
)

Definition of the auxiliary variables

ψ = θ2

Minv = 1
M

Yields the quadratic recast

Rf(Uf) = Rf(θ,M, ψ,Minv ) =





θ− θψ
6

+ 0.1(θ −Minvπ)

ψ − θ2

Minv M−1




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How to recast everything else quadratically ?

Let R(U) = R(u, λ) = u − tan(u) − λ. Let t = tan(u) and let z = 1 + t2. t and z can

be defined by the system :
dt = z du

z = 1 + t2

These equations are quadratic with respect to the Taylor coefficients of u,t and z.
Then Rf and its differential form dRf are defined :

Rf(Uf) = Rf(u, λ, t, z) =





u − t − λ
t − tan(u)
z−1−t2



 dRf(Uf, dUf) =





Not needed
dt−z du

Not needed





And the operators are C =





0
0
−1



, L(Uf) =





u − t − λ
0
z



, Q(Uf,Uf) =





0
0

−t2



,

dL(dUf) =





0
dt
0



 and dQ(Uf, dUf) =





0
−z du

0



.
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Transcendental example : Pendulum

Pendulum subject to an angular spring at position θ = π
M

.
The equilibrium is given by :

r(θ, k ,M) = sin(θ) + k(θ −
π

M
)

Definition of the auxiliary variables, together with the differentiated forms (when
needed) :

s = sin(θ) ds = cdθ
c = cos(θ) dc = −sdθ

Minv = 1
M

Define Uf = (θ, k ,M, s, c,Minv ) yields the "quadratic" recast

Rf(Uf) =







s + k(θ −Minvπ)
s − sin(θ)
c − cos(θ)
Minv M − 1







dRf(Uf, dUf) =







Not needed
ds − cdθ
dc + sdθ

Not needed






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End of the Algebraic elements of theory.
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Taylor series algebra

Product of Taylor series u(a)× v(a) :

(
u0 + au1 + a2u2 + · · ·+ aNuN

)
×
(
v0 + av1 + a2v2 + · · ·+ aNvN

)

= u0v0 + a(u1v0 + u0v1) + a2(u2v0 + u1v1 + u0v2) + · · ·+ aN
∑N

j=0 uN−jvj

It is truncated at order N.

Differentiation of Taylor series ∂u
∂a

(a) :

∂

∂a

(

u0 + au1 + a2u2 + · · ·+ aNuN

)

= u1 + 2au2 + 3a2u3 + · · ·+ NaN−1uN

The constant coefficient u0 is not anymore in the development, that goes now up
to order N − 1.
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Manlab 4.0

Let R(U) = 0 be

r1(u1, u2, λ) = 2u1 − u2 + 100
u1

1+u1+u2
1

− λ = 0

r2(u1, u2, λ) = 2u2 − u1 + 100
u2

1+u2+u2
2

− (λ+ µ) = 0

Introduce the auxiliary variables :

v1 = 1 + u1 + u1u1

v2 = 1 + u2 + u2u2

v3 = 1/v1

v4 = 1/v2
All these expression are quadratic, or easily made quadratic

"linear declaration rule" : an auxiliary variable vi cannot appear on the left hand
side before it has been explicitely defined as vi = f (U, v1, v2, . . . , vi−1). Ensures

that ∂Ra
∂Ua

is invertible.

Let Ua = [v1, v2, v3, v4] be the vector of auxiliary variables
Let Uf = [U,Ua]
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Manlab 4.0

The original system R(U) = 0 is replaced by the equivalent quadratic one R(Uf)

r1 := 2u1 − u2 + 100u1v3 − λ = 0
r2 := 2u2 − u1 + 100u2v3 − (λ+ µ) = 0
raux1 := v1 − 1 + u1 + u1 ∗ u1 = 0
raux2 := v2 − 1 + u2 + u2 ∗ u2 = 0
raux3 := v3 ∗ v1 − 1 = 0
raux4 := v4 ∗ v2 − 1 = 0

Tensor formalism : this quadratic system may be written

Ri = Ci + LijUj + Qijk UjUk i , j , k = 1, 2, . . . n

with C,L,Q being tensors of order 1, 2 and 3
Here, we have 7 components Ci , 49 components Lij and 343 components Qijk .

But most of them are zero !
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Manlab 4.0 : Sparse tensor formalism

The sparse tensor C, L and Q are defined by the following lists (as in Matlab for a
sparse matrix)

order 1 tensor C
iC= [ 2 5 6 ]

vC= [-µ -1 -1 ]

order 2 tensor L
iL= [1 1 1 2 2 2 3 3 4 4 5 6 ]

jL= [1 2 7 1 2 7 1 3 2 4 5 6 ]

vL= [2 -1 -1 -1 2 -1 -1 1 -1 1 1 1 ]

order 3 tensor Q
iQ= [ 1 2 3 4 5 6 ]

jQ= [ 1 2 1 2 3 4 ]

kQ= [ 5 6 1 2 5 6 ]

vQ= [100 100 -1 -1 1 1 ]

In Manlab 4.0, these lists are automatically generated from the quadratic system.

Manlab-4 formation



Overview

The Asymptotic Numerical Method

The quadratic framework

More on the ANM

Manlab 4.0 : Sparse tensor formalism

How to get the lists defining the sparse tensor, from the quadratic expression
R(X) := 0?

Polarization formula :

C = R(0)

L(X) =
1

2
(R(X) − R(−X))

Q(X , Y ) =
1

4
(R(X + Y ) − R(X − Y ) − R(Y ) + R(−Y ))
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Manlab 4.0 : Sparse tensor formalism

Using these lists, the computation of the residual vector R(U) = C + L(U) + Q(U,U)
stand in one (Matlab) line.

R =sparse(iC,ones(1,size(iC,2)),vC’,neq,1)

+ sparse(iL,ones(1,size(iL,2)),vL’.*U(jL),neq,1)

+ sparse(iQ,ones(1,size(iQ,2)),vQ’.*(U(jQ).*U(kQ)),neq,1)

For the jacobian matrix dRdU = L(.) + Q(U, .) + Q(.,U)

dRdU = sparse(iL,jL,sys.vL,neq,ninc)

+ sparse(iQ,kQ,vQ’.*U(jQ),neq,ninc)

+ sparse(iQ,jQ,vQ’.*U(kQ),neq,ninc)
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Manlab 4.0 : Condensation

The linear problem to be solved at each order p reads :

[
B Aaux

A C

] [
U

Uaux

]

=

[
Faux p

Fp

]
← Raux

← R

Thanks to the "linear declaration rule", the matrix Aaux is triangular which allows an
easy and cheap block solving

We first solve [

A− C A−1
aux B

] [
U
]
=
[

Fp − C A−1
aux Faux p

]

where
[

A− C A−1
aux B

]

is the jacobian matrix of the original (non quadratic) system.
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Bifurcation detection using series analysis

Numerical evidence : near a simple bifurcation, a geometric series emerge in the Taylor
series.

U(a) = U0 + a U1 + a2 U2 + a3 U3 + . . .

First order analysis : expression of a pertur-
bed branches near a simple bifurcation [Co-
chelin & Médale, 2013]

U(a) = U0 + a Ut1 − ε
a
d

(1− a
d
)

Ut2

Ut1

Ut2
U0

Uc

d
ε

a
d

1− a
d

= a
d
+ ( a

d
)2 + ( a

d
)3 + · · · , a geometric serie with common ratio 1

d

After each Taylor series computation, we look for an emerging geometric series.
When detected , it is extracted, completed to infinity and replaced by a fraction

U(a) = U0 + a Û1 + a2 Û2 + · · ·+ an−1 Ûn−1
︸ ︷︷ ︸

Û(a) cleaned series

+
a

d

(

1

1− a
d

)

Uscale

We get d , Ut2 and can go further the bifurcation thanks to the cleaned series.
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