Book

Méthode Asymptotique Numérique (in french) by B. Cochelin, N. Damil and M. Potier-Ferry. Hermes Sciences, Lavoisier 2007.

Articles

B. Cochelin, N. Damil and M. Potier-Ferry. " Asymptotic-Numerical Methods and Padé approximants for non- linear elastic structures" Int. J. Numer. Methods Engng , Vol 37, p 1187-1213, 1994.

B. Cochelin. " A path following technique via an Asymptotic-Numerical method" Computers & Structures, Vol 53, N° 5, p 1181-1192, 1994.

A. Najah, B. Cochelin, N. Damil and M. Potier-Ferry. "A critical review of Asymptotic-Numerical Method"" Archives of Computational Methods in Engineering, Vol 5, 31-50, 1998

H. Zarouni, B. Cochelin and M. Potier-Ferry. "Asymptotic-numerical methods for shells with finite rotations" Computer Methods in Applied Mecahnics and Engineering, Vol 175, 71-85, 1999.

J.M. Cadou, M. Potier-Ferry, B. Cochelin and N. Damil "Asymptotic Numerical Method for stationary Navier-Stokes equation and with Petrov-Galerkin formulation", Int. J. Numer. Methods Engng, Vol 50, p 825-845, 2001

S. Baguet B. Cochelin. ’’ On the behaviour of the ANM continuation in the presence of bifurcations’’, Comm. In Numer. Meth. in Engng,Vol 19, N° 6, p459-471, 2003.

B. Cochelin C. Vergez. "A high order purely frequency-based harmonic balance formulation for continuation of periodic solutions", Journal of Sound and Vibration, 2009.(download HAL version).

A. Lazarus and O. Thomas "A harmonic-based method for computing the stability of periodic solutions of dynamical systems", Comptes Rendus Mécanique, 338(9), pp. 510-517, 2010.

O. Thomas, A. Lazarus and C. Touzé "A harmonic-based method for computing the stability of periodic oscillations of non-linear structural systems", Proceedings of the ASME 2010 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, IDETC/CIE 2010, August 2010, Montreal, Canada.

S. Karkar, B. Cochelin, C. Vergez "A high-order, purely frequency based harmonic balance formulation for continuation of periodic solutions: The case of non-polynomial nonlinearities", Journal of Sound and Vibration vol. 332, num. 4, pp. 968-977, 2013.

S. Karkar, B. Cochelin, C. Vergez "A comparative study of the harmonic balance method and the orthogonal collocation method on stiff nonlinear systems2, Journal of Sound and Vibration, vol. 333, num. 12, p. 2554-2567, 2014.

PhD. Theses

S. Karkar "Méthodes numériques pour les systèmes dynamiques non linéaires. Application aux instruments de musique auto-oscillants", PhD Thesis, Aix-Marseille University, 2012. (supervisors : B. Cochelinand C. Vergez)